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Abstract

Purpose. To assess the performance of standard image registration techniques
for automated MRI-based segmentation of the hippocampus in elderly subjects with
Alzheimer’s Disease (AD) and mild cognitive impairment (MCI).Methods. Struc-
tural MR images of 54 age- and gender-matched healthy elderly individuals, subjects
with probable AD, and subjects with MCI were collected at the University of Pitts-
burgh Alzheimer’s Disease Research Center. Hippocampi in subject images were au-
tomatically segmented by using AIR, SPM, FLIRT, and the fully-deformable method
of Chen to align the images to the Harvard atlas, MNI atlas, and randomly-selected,
manually-labeled subject images. Mixed-effects statistical models analyzed the ef-
fects of side of the brain, disease state, registration method, choice of atlas, and man-
ual tracing protocol on the agreement between automated segmentations and expert
manual segmentations.Results. Registration methods that produced higher degrees
of geometric deformation produced automated segmentations with higher agreement
with manual segmentations. Automated-manual agreement between Chen’s method
and expert manual segmentations were competitive with manual-manual agreement.
Segmentations of the right hippocampus were more consistent with manual segmenta-
tions than those of the left. Automated-manual agreement was significantly lower in
AD brains than MCI or controls. Automated segmentations based on registration with
a randomly-selected subject image were more consistent with manual segmentations
than those based on registration with the Harvard or MNI atlas. The manual tracing
protocol was a significant source of variation in automated-manual agreement.
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1 Introduction

This paper presents a quantitative evaluation of methods for automatically delineating
(or segmenting) the hippocampus in MR images of elderly subjects with Alzheimer’s
disease (AD) and mild cognitive impairment (MCI). We focus onatlas-basedap-
proaches that geometrically align (orregister) the subject image to a reference image
on which the hippocampus has been manually delineated. Our experiments evaluate
the use of several widely-disseminated software registration packages for atlas-based
hippocampus segmentation on images of 54 elderly controls, AD subjects, and MCI
subjects.

Hippocampus segmentation in MCI and AD While the techniques we describe are
general enough to apply to automated segmentation of arbitrary structures in the brain,
we focus on the elderly hippocampus because it plays a critical role in the neurodegen-
erative progression of AD. In particular, hippocampal atrophy is known to occur early
in the course of AD on a spatial scale large enough to be detectable with structural
MR images [3] [33]. Therefore, hippocampal atrophy has been proposed as a clinical
marker for early AD. Visual, qualitative atrophy assessment (see, for example, [15])
has been hindered by the presence of low-contrast boundaries between neighboring
anatomical structures, varying protocols for atrophy assessment, and the relative sub-
tlety of atrophy early in the course of AD [20]. However, the development of reliable,
repeatable protocols for human raters to delineate the hippocampus have led to the pos-
sibility of precise quantitative evaluation of the hippocampus (e.g., [29] [27]). Besides
enabling the quantitative study of atrophy in MCI and AD [7], hippocampus segmen-
tation also enables region-of-interest-level quantification of hippocampus activation in
functional images that have a co-registered structural image [16] and allows investi-
gators to study other features of elderly hippocampi, such as their bilateral symmetry
[2].

Automated methods However, manual segmentations are labor-intensive, vary from
person to person, and require training the rater. Typical hippocampi take between 30
minutes and 2 hours to trace by hand; furthermore, expert raters quickly become fa-
tigued by the manual dexterity and hand-eye coordination required to perform the seg-
mentation, so it is usually not possible for them to spend long, continuous periods of
time tracing. Each rater must be trained and validated by an expert, who must take
care that hippocampus boundaries traced by the trainee are consistent with those of
other raters. For these reasons, manual segmentation of large numbers of hippocampi
for broad studies of atrophy effects has not been feasible. Several authors have pro-
posed semi-automated segmentation methods that reduce manual segmentation labor
by having the user identify a sparse set of image landmarks that constrain a subsequent
automated segmentation process (see, for example, [46] [19] [8]). Here, however, we
focus on fully-automated techniques to eliminate the need for a user to manually pro-
cess each image under study, and to eliminate the landmark-identification process as a
source of variability between segmentations of the same image. In so doing, we aim to
overcome the difficulties in segmentation introduced by age- and AD-associated vari-
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ability in hippocampal shape and volume.

Atlas-based segmentation We evaluateatlas-basedtechniques for automated seg-
mentation of subject images. The key components are a special reference image called
the atlas image, an atlas mask, i.e. a representation of the coordinates of the struc-
ture of interest in the atlas image, and a technique for image registration. Atlas-based
segmentation simply registers the atlas image to the subject image, and uses the result-
ing spatial transformation to map the coordinates of the structure of interest from the
atlas image to the subject image. Atlas-based segmentation, while conceptually sim-
ple, has several favorable qualities. First, the general problem of image registration is
at the heart of a wide variety of medical applications including visualization, image-
guided surgery, and voxel-based morphometry. This allows atlas-based segmentation
techniques to take advantage of methodological advances driven by a wide range of
application areas. Furthermore, atlas-based approaches are among the easiest to imple-
ment since they only require the user to align the atlas and subject images. Competing
approaches to automatic hippocampus segmentation usually involve more complex op-
timizations involving prior models of how the the shape of the structure of interest
varies over a population. Our view is that these more complicated approaches have the
potential to provide slightly more accurate estimates of the structure of interest since
they make use of more information than our atlas-based approach. Indeed, in the long
term we envision an overall system in which atlas-based techniques provide an initial
estimate of the subject mask, and then more complex procedures refine that estimate if
needed for the application at hand.

Standard registration packages and transformation models We segment the hip-
pocampus in a subject image by registering it to an atlas image on which the hippocam-
pus has been traced manually. Previous studies have reported atlas-based hippocam-
pus segmentation results based on recently-developed, cutting-edge registration algo-
rithms that lack a widely-disseminated, standard software implementation (e.g., [12]).
Furthermore, no studies to date have systematically compared competing registration
methods in terms of their performance in atlas-based elderly hippocampus segmenta-
tion. In contrast, our goal is to assess the accuracy of hippocampus segmentations that
are generated using a variety of software packages that are already widely employed to
process images at brain imaging laboratories. In particular, our experiments evaluate
the registration components of the AIR [55], SPM [21], and FSL [28] packages, as
well as an implementation of Chen’s algorithm [6] that is similar to the classic Demons
registration algorithm [48] (which is available in,e.g. the ITK software package [56]).
We focus on established software packages to explore the possibility for investigators
to immediately analyze brain structures in their rapidly-growing databases of geriatric
MR images1. Besides comparing individual registration packages, our results also
indicate general trends in terms of overall mathematical characteristics of their algo-
rithms. In particular, our results suggest that atlas-based segmentation performance can

1Indeed, we have anecdotal evidence that many laboratories have already applied SPM and AIR to atlas-
based elderly hippocampus segmentation, despite a lack of experimental validation
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be greatly enhanced by registration methods that are allowed to geometrically deform
the subject image to a high degree while registering it to the atlas image.

Standard atlases Our experiments also examine how the choice of atlas image and
atlas mask affect atlas-based segmentation performance. In particular, we use the reg-
istration techniques to align the subject image to the Harvard and MNI atlases [31]
[50]. We chose these atlases– ourstandard atlases– for the same reason we chose our
registration algorithms– they are already widely used in brain imaging laboratories to
define a common reference frame for population-based inferences in voxel-based mor-
phometry [1], deformation-based morphometry [9], and related methods. As opposed
to probablistic atlases [11], which are averaged representations of multiple brains, the
Harvard and MNI atlases are derived from one or more images of a single subject.
Standard atlases can be advantageous for atlas-based segmentation since they contain a
well-studied image and an extensive set of manual segmentations, and therefore require
no hand-labeling of images on the part of the user. However, the use of standard atlases
may cause registration difficulties if the standard atlas image differs widely from the
subject images. In particular, standard atlas images are usually scans of young, healthy
brains; age-associated or disease-associated structural characteristics in the subject im-
age can make the problem of registering it to the atlas image so difficult that registration
can fail. Furthermore, differences in signal characteristics between the atlas image and
subject images can add difficulty to the registration process. Another potential diffi-
culty with standard atlases is that their atlas masks are based on a set of anatomical
boundary conventions that may not coincide with the conventions of a particular labo-
ratory.

Cohort atlases To address these difficulties, we consider an alternative segmentation
approach in which the user manually segments the structure of interest on one or more
subject images selected from a population. The subject images, augmented with the
manual segmentations, are then treated as ”atlas images;” that is, they are used as the
reference images that all other images in the population are registered to in order to
automatically segment the structure of interest in the rest of the population. We refer
to the selected, manually-segmented subject images ascohort atlas imagessince they
are drawn from the same cohort as the other subject images to be segmented. While
it is unusual to refer to individual subject images with manual segmentations as ”at-
lases,” we use the term to emphasize their role in providing a standard reference frame
for aligning images of interest to during automated segmentation. While cohort atlas
images reflect characteristics that are peculiar to a particular scan of a particular sub-
ject, we feel that they have potential advantages over standard atlases. If the population
of images is homogeneous with respect to factors such as sensor acquisition param-
eters, subject age, and subject disease state, then drawing a cohort atlas image from
the population guarantees that these factors will not confound the registration process.
Furthermore, hand-labeling the structure of interest insures the user that anatomical
boundaries reflect his or her conventions. A drawback of cohort atlases is that they
are inherently more labor-intensive than standard atlases since they require the user to
hand-label the structure of interest on each selected cohort atlas image. Standard atlases
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and cohort atlases have both been employed by a variety of atlas-based segmentation
techniques (see,e.g., [26] vs. [54]).

The rest of this paper is organized as follows. We give a broad overview of previous
approaches to hippocampus segmentation, and atlas-based segmentation in general, in
Section 2. Section 3 describes the registration methods we evaluate in terms of a unified
mathematical formulation. In Section 4 we describe the set of images our algorithms
are applied to, the manual segmentations we use for validation, and the design of our
experiments. Section 5 presents results of the experiments, followed by a discussion in
Section 6.

2 Related Work

In this section we differentiate our work from prior studies in atlas-based segmentation
and hippocampus segmentation in general. Our emphasis on quantitative evaluation of
a difficult atrophy-affected brain structure, and comparison of several standard meth-
ods, sets our study apart from related work.

Quantitative validation of elderly hippocampus segmentation Our study augments
the limited number of quantitative evaluations of fully-automated hippocampus seg-
mentation algorithms applied to AD subjects. Fischlet al. [18] applied their auto-
mated brain segmentation technique to subject groups that roughly correspond to our
control, MCI, and AD groups, and showed that differences in automatically-estimated
hippocampal volumes between groups correspond well with expected AD-related at-
rophy. Similarly, Freeboroughet al. [19] indirectly validate their semi-automated seg-
mentations by showing that estimated hippocampal volume decreases rapidly in serial
scans of autosomal AD subjects. Here, we go a step further by directly validating the
quality of automatically-segmented AD, MCI, and control hippocampi against man-
ual segmentations by expert raters. Crumet al. [12] segmented the hippocampus in
a subject image by registering it to a manually-segmented image of the same subject
taken roughly a year previously, and validate the approach on serial scans of elderly
control and AD subjects. Our experiments with cohort atlases take a similar approach
to validating inter-subject, as opposed to intra-subject, segmentation. Rizzoet al. [43]
quantitatively validated their standard-atlas-based segmentation technique on a single
AD subject, along with a Parkinson’s disease subject and 3 controls. Perez de Alejo
et al. [14] evaluated a semi-automated method on a limited number of hippocampus
slices in an AD population. In terms of quantitative evaluations of elderly hippocam-
pus segmentation in general, Shenet al. [46] have shown that their semi-automated
technique is competitive with manual tracing on the hippocampi of a set of 10 elderly
subjects. Several authors, including Halleret al. [23], have validated their segmen-
tation approaches by checking the agreement between the volumes of automated and
manual segmentations.

Hippocampus segmentation in general Other automated approaches have been ap-
plied to segmenting the hippocampus in younger subjects, especially those with schizophre-
nia and other hippocampus-relevent conditions. While conditions such as schizophre-
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nia can introduce variability in hippocampal shape and volume that complicate auto-
mated segmentation, young adult hippocampi are generally larger, rounder, and more
distinct from surrounding tissue than elderly hippocampi. Webbet al. [54] applied
a semi-automated, atlas-based segmentation technique to subjects with temporal lobe
epilepsy (TLE), showing that the resulting hippocampal volume can be a marker for
TLE-related atrophy. Several recent automated methods applied to young hippocampi
have combined statistical models of its appearance with prior models of its expected
shape; these techniques vary mainly in terms of whether shape variation is represented
in terms of surfaces [30] [40], medial structures [41], or dense volume deformations
[17]. Our view is that these more complex shape-and-appearance based methods have
the potential in the future to be extended so that they can accurately deal with the com-
plications of age-associated and AD-associated atrophy. Indeed, we envision using
atlas-based techniques to provide an initial starting guess at the segmentation, which is
further refined by a more precise shape and appearance model.

Since fully-automated hippocampus segmentation is relatively difficult, semi-automated
methods are more common. In low-level semi-automated techniques, the user indi-
cates starting points or constraints for low-level image processing routines like region-
growing or pixel clustering [19] [4]; in contrast, high-level techniques allow the user to
provide constraints or initial conditions for alignment between the subject image and an
atlas image or shape model [46] [25] [8] [23]. In other semi-automated techniques, the
segmentation of the hippocampus on an initial slice is propagated to other slices in the
volume [14]. Here, we focus on the long-term goal of fully-automated hippocampus
segmentation to eliminate required interaction with a human user.

Atlas-based segmentation in general Atlas-based segmentation techniques can be
used to segment any structure or tissue type of interest that has been manually seg-
mented on the atlas image. Therefore, while a variety of authors have applied atlas-
based segmentation to other brain structures and subject groups (for example, [51]
[10] [5] [34]) it is possible that their methods could be applied to the hippocampus
in elderly dementia patients. However, other atlas-based segmentation techniques are
generally based on institution-specific implementations of recent algorithms, while we
focus on packages such as SPM and AIR that are already widely disseminated and val-
idated. Dawant and colleagues validated an atlas-based segmentation technique similar
to Chen’s method, which we evaluate here, on a limited number of cerebellum slices on
a set of severely atrophied alcoholic brains [13] [24]. Our analysis of Chen’s method
extends these experiments to entire atrophied hippocampi.

3 Methods

In this section we provide a mathematical framework for atlas-based segmentation
through which we describe the standard algorithms we compare experimentally. While
several operating characteristics vary between each algorithm, we highlight the de-
gree to which each method is allowed to geometrically deform the subject image while
matching it to the atlas. This degree of distortion is summarized in thegeometric trans-
formation model.
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3.1 Problem formulation

We assume we are given a 3-dimensionalsubject image, I , whereI(x, y, z) represents
the image intensity at voxel location[x, y, z] 2. Our goal is to processI and recover
a binary volumeB, whereB(x, y, z) = 1 if I (x,y,z) is located in the hippocampus of
the brain, andB(x, y, z) = 0 otherwise. We refer toB as thestructure maskfor I .
We focus on this representations of the hippocampus for its simplicity and usefulness
in volumetric analysis; however we note that other representations, such as parametric
surfaces [30], may be more appropriate target outputs for some applications.

3.2 Atlas-based segmentation formulation

We assume that we have access to one or more atlas imagesI t. In this paper we
only consider the use of a single atlas image, however we note that other studies have
considered the use of multiple atlases (e.g., [44]). Along with the atlas image, we
assume we have access to an atlas maskBt, whereBt(x, y, z) = 1 if I t(x, y, z) is
located in the structure of interest ofI t, andBt(x, y, z) = 0 otherwise. Atlas-based
segmentation proceeds by first estimating the parameters of a geometric transformation
between the subject and atlas images, and then using the estimated transformation to
relate the atlas structure mask to the subject structure mask. In more detail, we assume
that an atlas imageI t and subject imageI are related to each other by the following
model:

I(gφ(x, y, z)) = hψ(I t(x, y, z)) + γ

The geometric transformation modelgφ transforms voxel locations in the atlas im-
age to voxel locations in the subject image; its behavior is governed by a vector of pa-
rameters,φ. For example, if we assume a rigid geometric transformation model,φ will
have entries for rotation angles about, and translations along, each of the three cardinal
axes. The intensity transformation modelhψ relates the intensities of corresponding
voxels in the atlas and subject images; it is meant to account for signal characteris-
tics, such as gain and field inhomogeneities, that differ between images. An example
intensity transformation is a linear scaling of intensity values, for which the parame-
ter vectorψ governing the behavior of the intensity transformation has only one entry,
namely the scaling parameter. In atlas-based segmentation, we first use optimization
techniques to estimateφ andψ, and then return an estimatêB of B by applyinggφ to
Bt:

B̂(x, y, z) = Bt(gφ(x, y, z))

A schematic illustration of atlas-based segmentation is shown Figure 1.

2Matrices are written in uppercase bold, and their elements are indexed in parentheses,e.g. voxels in
image volumes (i.e. 3D matrices) are denotedA(x, y, z). 1-D matrices (i.e., vectors) with entriesx, y, z, ...
are written[x, y, z, ...]. Scalar-matrix multiplication is denoted with·: a · [x, y, z] = [ax, ay, az]. Matrix-
matrix multiplication is written by juxtaposing the two matrices.
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Figure 1: Schematic view of atlas-based segmentation. An intensity transformation and geometric transformation are esti-
mated to register the atlas image to the subject image; the geometric transformation is applied to the atlas mask in order to
estimate the subject mask.

3.3 Registration methods

We compare the performance of AIR, SPM, FLIRT, and Chen’s method as registra-
tion substrates for atlas-based segmentation of elderly hippocampi. Here, we briefly
describe each of these methods in terms of their most important components, which
are:

• Geometric Transformation Model: This is the functional form chosen forgφ.

• Intensity Transformation Model: This is the functional form chosen forhψ.

• Cost function: The cost function gives a numerical score to putative solutions
for φ andψ. Given a particular solution forφ andψ, it can be thought of as a
functionc(φ, ψ) that in some way compares the image intensitiesI(gφ(x, y, z))
andhψ(I t(x, y, z))+γ for some number of image locations(x, y, z), and returns
lower values when the intensities are more similar to each other.

• Optimizer: Given choices forgφ, hψ, andc(φ, ψ), the optimizer is the numeri-
cal technique used for finding solutions forφ andψ that minimizec(φ, ψ).

• Multi-scale strategy: Most methods incorporate schemes for smoothing and/or
downsamplingI t and I before evaluatingc(φ, ψ). Doing so serves to smooth
c(φ, ψ), and also to help ease the computational burden of evaluating it.

In summary, each of the registration techniques may be summarized at a high level
as employing an optimizer to adjust the parameters of geometric and intensity transfor-
mations between atlas and subject images so that doing so minimizes a cost function.
For AIR, SPM, and Chen’s method, this optimization is performed in a series of stages,
where each subsequent stage corresponds to a more complex geometric transformation
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Geometric Intensity Optimizer

AIR affine Affine Linear scaling Newton
SPM affine Affine Linear Scaling Newton

FLIRT affine Affine None Powell’s Method
AIR semi-deformable Polynomial basis functions Linear scaling Newton
SPM semi-deformable DCT basis functions Linear scaling Newton
Chen semi-deformable Piecewise linear Mean and variance normalization Levenberg-Marquardt
Chen fully-deformable Dense voxel flow Mean and variance normalization Gradient descent

Table 1: Algorithmic properties of the compared registration methods.

model. Table 1 briefly summarizes the geometric and intensity transformations, op-
timizer, and multi-scale strategy for each stage of the methods we compare in our
experiments. Each method we evaluate contains additional algorithmic details that are
not captured by these components; however, we feel that the components capture the
most important aspects in which the overall methods operate and differ from each other.
Whenever possible, we set other algorithmic parameters to be identical from package
to package. For example, for all packages we used a trilinear model to interpolate
image intensities to sub-voxel locations, and we chose a sum-of-squared-differences
(SSD) cost function. We chose SSD because the images in our population were all ac-
quired on the same scanner with similar imaging parameters, meaning that the global
distribution of intensities does not vary significantly from image to image. For this
reason, we did not expect that cost functions designed to capture complex relationships
between image intensities from image to image (mutual information, for example [42])
would significantly improve our registration results. We note that while all methods
employed SSD, FLIRT used an apodized version; that is, voxels closer to the edge of
the overlapping brain region were weighted lower than those closer to the center.

3.3.1 AIR

The first stage of AIR estimates the parameters of an affine geometric transformation.
That is,gφ(x, y, z) = A[x, y, z, 1] for a 4-by-4 matrixA determined by 12 independent
parameters. The intensity transformation model is a linear scaling,hψ(I t(x, y, z)) =
w · I t(x, y, z), with a single parameterw. This first stage of AIR estimates the 12
parameters ofA along withw by a Newton-type iterative optimizer. In the second
stage of AIR, the geometric transformation model consists of projecting the spatial
coordinates onto a polynomial basis of degreeK, specifically:

gφ(x, y, z) =
K∑
p=0

K∑
q=0

K∑
r=0

[apqr1, apqr2, apqr3] · xpyqzr

The coefficientsapqr are the geometric transformation parameters; they are estimated
by the same Newton-type minimization as in the affine case. The degreeK of the
polynomial basis is a user-set parameter; however, AIR allows the user to estimate the
transformation parameters successively for increasing values ofK, using the solution
for K = k − 1 as the starting point for estimating parameters forK = k. Using this
setting, we increaseK from 2 to 12, terminating the estimation early if the Newton
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minimization becomes ill-conditioned. In both stages of AIR, the multi-scale strategy
is to compute the cost function at everyk-by-k-by-kth voxel, wherek is increased by
factors of 3 over the course of optimization, from 81 to 1.

3.3.2 SPM

As in AIR, the first stage of SPM estimates a 12-parameter affine geometric transfor-
mation and a single scaling parameter for the intensity transformation. For the second
stage, the geometric transformation model follows the same functional form as a dis-
crete cosine transform (DCT), that is,

gφ(x, y, z) = [x, y, z] +
K∑
p=0

[ap1, ap2, ap3] · dp(x, y, z)

The functionsdp(x, y, z) are the low-dimensional basis functions of the DCT, and
the problem is to estimate the coefficientsap1, ap2, ap3. In both stages, the parameters
are estimated using a Gauss-Newton minimization procedure. The multiscale strategy
employed by SPM is to evaluate the cost function at everyk-by-k-by-kth voxel as in
AIR; however, rather than setting a fixed, prior schedule fork, SPM modulatesk at
each iteration of the optimization procedure according to the error in voxel intensi-
ties between the aligned atlas and subject images at that iteration. Specifically, SPM
computes the variance in(I(gφ(x, y, z))− hψ(I t(x, y, z)))2 at each iteration, and sets
k proportional to that variance. In so doing, SPM samples more finely as iterations
proceed and the intensity error variance reduces.

With respect to our comparison of registration techniques, it is important to note
that SPM explicitly biases its geometric transformation parameter estimates toward
transformations that deform the subject volume minimally. Specifically, SPM simulta-
neously attempts to minimize the SSD error between the geometrically- and intensity-
aligned subject and atlas images, as well as the magnitude of the DCT coefficients
ap1, ap2, ap3. The bias toward minimally-deforming transformations is motivated by
the application of SPM to the spatial normalization of images for voxel-based mor-
phometry (VBM). However, for our atlas-based segmentation application, the goal is
to deform the subject image so that the voxels of the subject hippocampus aligns as
well as possible with the voxels of the atlas hippocampus, regardless of how heavily
the subject image needs to be deformed; thus, SPM may be at a fundamental disadvan-
tage against AIR and Chen’s method, since they both encourage high-quality image
alignment with no bias toward minimally-deforming transformations. However, we in-
clude SPM in our results because various authors routinely employ SPM for atlas-based
segmentation purposes.

3.3.3 Chen’s method

The registration method of Chen consists of three stages that estimate similarity, piecewise-
linear, and dense voxel-by-voxel geometric transformations respectively. In the first
stage, a translation, rotation, and scaling between the images is estimated, and is used
as the starting point for the estimation of a piecewise-linear geometric transformation.

9



The piecewise-linear model is specified in terms of the 3d coordinates of a set of control
points{[xg, yg, zg]}, and displacements of the control points,{[δxg, δyg, δzg]}. The
control points form a regular 3D rectangular grid that covers the atlas image, so that
each voxel[x, y, z] in the atlas image can be categorized as belonging to a sub-volume,
or cell, bounded by eight control points :[xgl, ygl, zgl] , [xgh, ygl, zgl] , [xgl, ygh, zgl]
, [xgl, ygl, zgh] , [xgh, ygh, zgl] , [xgh, ygl, zgh] , [xgl, ygh, zgh] , [xgh, ygh, zgh], such
thatxgl < x < xgh, ygl < y < ygh, zgl < z < zgh. The geometric transformation
for each voxel is a trilinear interpolation of the displacements of the control points the
bound its cell. That is,

gφ(x, y, z) = [x, y, z]+[αx∗δxgl+(1−αx)∗δxgh, αy∗δygl+(1−αy)∗δygh, αz∗δzgl+(1−αz)∗δzgh]

whereαx = (xgh − x)/(xgh − xgl) and similarly forαy and αz. The parame-
ters to estimate for this geometric transformation are the control point displacements
[δxg, δyg, δzg]. Chen’s method uses the Levenburg-Marquardt method to iteratively es-
timate these parameters. Instead of estimating a single piecewise linear transformation,
Chen’s method estimates a series of piecewise linear transformations corresponding to
increasingly fine-grained grids of control points. In other words, the method first es-
timates displacements for a 2x2x2 grid of control points, uses these displacements as
the starting point for computation of displacements of a 3x3x3 grid, and so on. The
piecewise-linear geometric transformation is the starting point for the estimation of a
dense voxel-by-voxel transformation in the third stage of Chen’s method, or in other
words,

gφ(x, y, z) = [x, y, z] + [δx, δy, δz]

The parameters to estimate for this transformation model are the 3D displacements
[δx, δy, δz] for each voxel[x, y, z] in the atlas image. The displacements are estimated
using a method similar to the Demons algorithm of Thirionet al.. Specifically, a first-
order Taylor expansion of the constraintI((x+ δx, y+ δy, z + δz)) = hψ(I t(x, y, z))
yields an equation that gives an appropriate displacement[δx, δy, δz] solely in terms
of the imagesI t andhψ(I t), and their spatial image gradients. This displacement is
computed iteratively at each voxel in the atlas image until it converges.

Chen’s intensity transformation model consists of a translation and scaling,i.e.
hψ(x) = ax+ b. The parameters,a andb, are estimated separately from the geometric
transformation parameters, using the simple heuristic that the mean and variance of the
intensity distribution of the atlas image should match that of the subject image. For the
piecewise-linear stage, the cost function is computed at a random selection ofk voxels;
while in principle we could increasek as the granularity of the grid of control points
becomes finer, we simply keep a constantk throughout the piecewise linear stage.

3.3.4 FLIRT

Like the first phases of AIR and SPM, FLIRT estimates an affine geometric transfor-
mation using a multiscale strategy that computes a cost function at everyk-by-k-by-k
voxels, withk increasing over the course of the optimization. However, FLIRT uses a
significantly different overall optimization strategy, cost function, and intensity trans-
formation model. FLIRT apodizes its cost function; that is, at each iteration of esti-
matingφ, the cost function depends on the overlap between the brain portions ofgφ(I)

10



Before Deformation After Chen Fully-deformable

After Chen Semi-deformable After SPM Semi-deformable After AIR Semi-deformable After FSL Affine

Moving Image
Stationary Image

Figure 2: Example image deformations produced by fully-deformable, semi-deformable, and affine registration techniques.
The moving image is registered to the stationary image using each of the 7 algorithms we analyze. The colored dots show the
geometric positions of voxels in the shown slice of the moving image before and after deformation by each of the methods.
The transformation produced by the AIR affine method and SPM affine method were almost identical to that of the FSL
affine method.

andhψ(I t). Apodization amounts to downweighting the contribution that voxels near
the edge of the overlapping region make toward the overall cost function. Furthermore,
FLIRT simultaneously maintains multiple estimates ofφ, each derived from its own
random initial guess; over the course of the optimization, these competing estimates
are winnowed down to a single, final answer forφ. Unlike AIR and SPM, FLIRT finds
low-cost settings forφ using Powell’s method, which is a downhill-simplex type ap-
proach that computes no derivatives. The final difference between FLIRT and the other
afffine methods is that it incorporates no intensity transformation model.

3.3.5 Summary

The chief characteristics of these algorithms are summarized in Table 1. We refer to the
basis function phases of SPM and AIR, as well as the piecewise-linear phase of Chen’s
method, as ”semi-deformable” methods, because while their geometric transforma-
tions vary spatially, they do so in a gradual, constrained, low-dimensional way; on the
other hand, we refer to the dense voxel-by-voxel phase of Chen’s method as a ”fully-
deformable” method because the geometric transformation is fully unconstrained. An
example showing the use of these techniques to register a pair of images in our MCI
data set is shown in Figure 2. Note that the geometric transformation produced by the
semi-deformable techniques is more spatially smooth than that of the fully-deformable
technique.

3.4 Registration algorithm details

Our chief goal is to examine the impact of the factors listed in Table 1 on the quality
of atlas-based hippocampus segmentation. Therefore, we strove to equalize all other
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operating parameters across all registration packages as much as possible. We used
the sum-of-squared-differences (SSD) cost function to evaluate the quality of image
alignment. Since all the images in our study were acquired with the same imaging
modality and have similar intensity characteristics, we did not feel that more general,
more computationally complex cost functions such as mutual information would sig-
nificantly improve registration results. We also used a trilinear model to interpolate
image intensities at sub-voxel locations. Each software package employed a slightly
different criterion to determine when the iterative search for good values forφ andψ
should halt; whenever possible (AIR, SPM, Chen), we set the maximum number of
iterations to 50. Each package also employed slightly different strategies for down-
sampling the images prior to computing the cost function; for AIR, SPM, and FLIRT,
the cost function is computed at everyk-by-k-by-kth voxel, wherek decreases over the
course of optimization. For Chen’s method, the cost function is computed at a random
sample ofk voxels at each iteration. Empirically, we found that near the beginning of
the numerical optimization, the techniques varied widely in terms of how many voxel
values were used to compute the cost function; however, near the end of optimization,
all methods computed the cost function at a number of voxels corresponding to every
k-by-k-by-kth voxel, wherek varied between roughly 2 and 4.

4 Experiments

Our experiments evaluate the degree to which segmentation results vary with respect
to disease state, registration algorithm, atlases, manual tracings, and side of the brain.
At the core of our experiments is the following sequence of actions:

1. Registering an atlas image to a subject image

2. Using the resulting geometric transformation to transfer manually-labeled left
and right hippocampus masks from the atlas image to the subject image

3. Evaluating the consistency between the resulting subject mask estimates and
ground-truth manual tracings

We refer to the execution of these actions for a particular choice of atlas image, subject
image, registration algorithm, and manual tracings as a segmentationtrial . Our exper-
imental results were obtained by performing a series of trials through which each of
these 4 factors is varied systematically. In particular, for both of our standard atlases,
we ran one trial for each possible combination of the 7 registration algorithms, 54 sub-
ject images, and 2 sets of manual tracings supplied with the atlas. Section 4.2 describes
our acquisition of ground-truth manual tracings and explains why each atlas image is
equipped with two distinct manual tracings of the left and right hippocampus. For the
cohort atlas scenario, we group the images by disease state (AD, MCI, or control). For
each disease state, and for each registration algorithm, we run one trial for each pos-
sible cohort atlas image and subject image within the disease group. The choice of
cohort atlas image is described in Section 4.3, and a description of our subject images
for the AD, MCI, and control populations is in Section 4.1. Section 4.5 describes the
numerical measures we use to quantify the agreement between an estimated subject
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mask and the corresponding ground-truth mask. Results from the trials are statistically
analyzed to determine the significance of the following factors on the consistency mea-
sures: registration algorithm, disease state, atlas type (standard or cohort), side of the
brain, and choice of manual tracing on the atlas.

4.1 Subject data

Our subject data consists of MR images of 20,19, and 15 subjects in the AD, MCI,
and control populations respectively. All subjects were enrolled in the University of
Pittsburgh Alzheimer’s Disease Research Center between 1999 and 2004 and given a
structural MR scan at time of enrollment. The spoiled gradient-recalled (SPGR) vol-
umetric T1-weighted pulse sequence, acquired in the coronal plane, has the following
parameters optimized for maximal contrast among gray matter, white matter, and CSF
(TE=5, TR =25, flip angle = 40 degrees, NEX = 1, slice thickness = 1.5mm/0mm
interslice). Along with the MR scan, subjects received a comprehensive battery of neu-
ropsychological and clinical tests at time of enrollment and at yearly follow-up visits
(see [35] [36] for evaluation procedure). A consensus meeting of neuroradiologists,
psychiatrists, neurologists, and psychologists diagnosed each subject into MCI [38],
AD, or control categories.

Skulls were stripped from all images using the Brain Extraction Tool (BET) [47],
and the images were cropped to remove all-zero slices using thecrop tool provided
with AIR 2.0 [55].

4.2 Manual segmentations

We evaluate automated segmentations by comparing them to manual segmentations
performed by a single expert rater, R1, who was blind to diagnosis, gender, age, and
other clinical data at the time of tracing. Hippocampi were traced on contiguous coro-
nal slices following the guidelines of Watsonet al. [53], Schuffet al. [45], and Pantel
et al. [37]. The traced structure included the hippocampus proper, the subiculum, and
the dentate gyrus. The image and tracing were viewed in all three orthogonal viewing
planes during manual segmentation. Addtionally, we selected 2 AD, 2 MCI, and 2 con-
trol images from the pool of 54 subjects for tracing by two additional trained raters, R2
and R3, using the same protocol. These additional manual segmentations were used
to compare automated segmentation performance to inter-rater agreement. All manual
segmentations were digitized into binary volumes for analysis.

4.3 Cohort atlases

In the cohort atlas scenario, we select an image– the cohort atlas image– from a sub-
ject population (AD, MCI, or control), manually trace left and right hippocampi on it,
and automatically segment the hippocampi in all other images in that population by
registering them to the cohort atlas image. An immediate question is how to select a
cohort atlas image from the population. It may be possible to browse the entire collec-
tion of images and select one or more subject images that possess characteristics that
are typical for the population; or, if the population is especially large, the user might
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simply select the cohort atlas image at random. Exploring the question of how to select
an atlas image that is typical of a population, or in some way favorable for atlas-based
segmentation, is beyond the scope of this paper (however, see [44] for an investigation
of this issue). Therefore, we consider random selection of cohort atlases. In particu-
lar, for each image in each subject population, we consider a hypothetical situation in
which that image is selected as the cohort atlas; all other images in the population are
registered to the cohort atlas image and hippocampus segmentation results are evalu-
ated. In other words, for a population ofk images, we considerk different possible
cohort atlases, which we register to allk − 1 other images in the population for a total
of k ∗ (k − 1) trials per registration method.

4.4 Standard atlases

In the standard atlas scenario, we are given an atlas image and atlas masks provided
by the atlas institution (Harvard or MNI). We register a subject image to the atlas
image to segment its hippocampi, and evaluate the segmentation by comparing it to the
manual segmentation performed by rater R1. However, we recognize that the manual
segmentation protocol used by R1 may differ from that used by manual tracers at MNI
and Harvard, and that our evaluation risks confounding two distinct sources of error:
the automated algorithm and discrepancies between tracing protocols. For this reason,
rater R1 traced left and right hippocampi on the Harvard and MNI atlas images, and
automatically segmented subject hippocampi by transforming the R1-traced structures
to the subject image.

4.5 Performance measures

We register the subject image to the atlas image in order to arrive at an estimateB̂
of the underlying hippocampus maskB. For any hippocampus maskB, we refer to
the voxels inB that correspond to a portion of the hippocampus (i.e., (x, y, z) such
thatB(x, y, z) = 1) as thestructure voxelsof B. We wish to evaluate the agreement
between̂B andB by answering two questions: first, to what degree do the hippocampi
in B̂ andB overlap with each other? Second, for the portions of the hippocampi inB̂
andB that are in error–i.e., that do not overlap with each other– how far are they from
overlapping? The first question aims to count the sheer number of voxels inB̂ and
B that disagree with each other; the second question delves deeper into how extreme
the errors are. Section 4.5.1 describes the overlap ratio, our criterion for quantifying
the number of error voxels bewteen the two masks; Section 4.5.2 describes our use of
closest-point distances (CPDs) to quantify the distance of error voxels to the correct
hippocampal surface. When evaluating automated hippocampus segmentations, we
feel it is important to quantify both the number of voxels betweenB̂ andB that are
in disagreement, and how far the hippocampus voxels inB̂ are from the hippocampus
surface inB. Both measures may be important to consider when evaluating atlas-based
segmentation for applications in which a degree of hippocampus localzation error may
be tolerable.
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c) Subject Mask Estimate

ATLAS-BASED HIPPOCAMPUS SEGMENTATION 8

I(gφ(x, y, z)) = hψ(It(x, y, z)) + γ

The geometric transformation model gφ transforms voxel locations in the atlas image to voxel

locations in the subject image; its behavior is governed by a vector of parameters, φ. For example,

if we assume a rigid geometric transformation model, φ will have entries for rotation angles about,

and translations along, each of the three cardinal axes. The intensity transformation model hψ

relates the intensities of corresponding voxels in the atlas and subject images; it is meant to

account for signal characteristics, such as gain and field inhomogeneities, that differ between

images. An example intensity transformation is a linear scaling of intensity values, for which the

parameter vector ψ governing the behavior of the intensity transformation has only one entry,

namely the scaling parameter. In atlas-based segmentation, we first use numerical techniques to

estimate φ and ψ, and then return an estimate B̂ of B by applying gφ to Bt:

B̂(x, y, z) = Bt(gφ(x, y, z))

Atlas-based segmentation has several favorable qualities. First, the general problem of image

registration – i.e., estimating φ and ψ– is at the heart of a wide variety of medical applications

including visualization, image-guided surgery, and voxel-based morphometry. Therefore, by

formulating our problem in terms of image registration, we are able to take advantage of

methodological advances driven by a wide range of application areas. Furthermore, atlas-based

approaches are among the simplest and easiest-to-implement since they only require the user

to align the raw input images. Competing approaches to automatic hippocampus segmentation

usually involve more complex optimizations involving interactions between two terms: a shape

model that uses prior knowledge about how hippocampi vary over a population to help constrain

the geometric transformation parameters φ; and an image model that indicates how the subject

image should appear in the vicinity of the hippocampus. Our view is that these more complicated

approaches have the potential to provide slightly more accurate subject mask estimates since they

make use of more information than our atlas-based approach. Indeed, in the long term we envision
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a) Subject Image I
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Figure 3: Evaluating consistency between masks using overall and sectional overlap and closest-point distances. A ground-
truth subject mask and estimated subject mask are shown in light and dark gray. Figure 3d) : Voxels in red overlap between
the ground-truth and the estimate. Overlap ratio measures the ratio between the volume of the red region and the volume
of the combined red and gray regions. Figure 3e) : For each error voxel (in gray), the closest point distance measures the
distance between the voxel and the surface of the other mask. Figure 3f) : The green bars split the hippocampus voxels
into axis-parallel sections. In sectional analysis, overlap ratio and closest-point distances are computed for each section
independently.

4.5.1 Overlap ratio measures degree of agreement between segmentations

To compute the overlap ratio, we consider three different sets of voxels: setA is the
voxels that are labeled as hippocampus by bothB̂ andB; setB has voxels labeled as
hippocampus bŷB but notB; and setC consists of voxels labeled as hippocampus by
B but notB̂ (SetsA, B, andC are labeled in white, dark gray, and light gray in Figure
3e). Theoverlap ratiofor the two masks is computed as follows:

or(B, B̂) =
|A|

|A|+ |B|+ |C|

In other words, the overlap ratio measures the volume of ”B AND B̂” divided by
the volume of ”B OR B̂”. When the two masks overlap perfectly,or(B, B̂) = 1 since
B andC are both empty; when the masks do not overlap at all,or(B, B̂) = 0 sinceA is
empty. The overlap ratio gives an easily interpretable measure of the degree to which
the masks overlap; it gives the percentage of hippocampus voxels from the two masks
that agree with each other. We note that several authors have quantified their automatic
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structure segmentation results in terms of similar criteria based on the relative sizes of
setsA, B andC; see, for example, [13] [30] [46] [32].

4.5.2 Closest-point distances measure severity of errors

The overlap ratio gives a measure of the sheer number of hippocampus voxels inB̂
andB that agree with each other; for a more detailed picture of how the discrepancies
between̂B andB are distributed, we compute closest-point distances (CPDs) between
error voxels and the hippocampus surfaces they should coincide with (see Figure 3e).
That is, for each voxel[x, y, z] in the setB above, we compute the distance between
[x, y, z] and the closest hippocampus voxel inB:

cp([x, y, z],B) = min
B(xB,yB,zB)>0

d([x, y, z], [xB, yB, zB])

Similarly, for each voxel[x, y, z] in setC above, we computecp([x, y, z], B̂). The func-
tion d is a distance metric, which for all of our experiments is the standard Euclidian
norm. The distribution ofcp([x, y, z],B) for voxels inB gives us a better sense of
whether the voxels mistakenly labeled as hippocampus by our automatic algorithm are
spatially near to, or far away from, the true location of the hippocampus. Likewise, the
distribution ofcp([x, y, z], B̂) for voxels inC gives us information about whether the
voxels our automatic segmentation algorithm mistakenly labels as ”non-hippocampus”
are close to, or distant from, the automatically estimated hippocampal surface.

For each subject imageI , atlas-based segmentation provides an estimate of the
hippocampi, and evaluating the quality of the estimate yields setsB andC of error
voxels for I . Let CP I be the set of closest point distances for all error voxels inI ,
i.e. CP I = {cp([x, y, z],B)|[x, y, z] ∈ B} ∪ {cp([x, y, z], B̂)|[x, y, z] ∈ C}. We com-
pute one setCP I for each trial and wish to summarize CPDs over a set of trials– for
example, the set of all trials on MCI subjects– into an interpretable statistic that sum-
marizes the distribution of error voxels over all trials. To do so, we first compute a
statistic– for example, the mean, median, or maximum– over eachCP I , then compute
the mean of those statistics over allCP I . For example, given a population of images,
{I1, I2, · · ·}, we computemean({mean(CP I1),mean(CP I2), · · ·}). An alternative
approach would be to pool all the CPDs over all images into a single set and compute
statistics over that set, for examplemean(CP I1 ∪ CP I2 · · · ). However, we feel that
focusing on per-trial statistics provides a more intuitive sense of how the segmenta-
tion methods may perform for a particular atlas image, subject image, and registration
method. In our results, we refer to the median CPD and maximum CPD for a particular
B̂ andB as themedian error magnitudeandmaximum error magnituderespectively.

4.5.3 Sectional analysis

Beyond computing overlap ratio and CPD measures over the entire hippocampus, we
divide the hippocampus into sections and compute performance measures over voxels
in each section. Doing so allows us to characterize the performance of our algorithms in
terms of hippocampal sub-regions, which we feel is important for at least two reasons.
First, certain portions of the hippocampus (for example, the head) may be more or
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Figure 4: Points on the left hippocampus in all 19 MCI subjects are shown projected onto the XZ plane of the image. Note
that all the hippocampi share the same rough initial orientation in this plane.

less important to segment accurately for some applications. Second, if atlas-based
segmentation is used as an initial step in a larger segmentation pipeline, later steps in
the pipeline (based on parametric shape models, for example [30] ) could be optimized
so that they focus computation on properly segmenting the hippocampal regions that
were segmented poorly by the atlas-based step.

Consider a bounding box(xmin, xmax, ymin, ymax, zmin, zmax) around all the
structure voxels in̂B and B (i.e., the x coordinates of all voxels inA ∪ B ∪ C are
betweenxmin and xmax, etc.). For each of the three cardinal directions, we par-
tition the estimated and ground-truth hippocampi intok sections along that direc-
tion and compute overlap ratios and CPDs in each of the sections. That is, for alli

from 1 to k we computeor(Bxi , B̂
x

i ) andCP Ix
i
, whereBxi (x, y, z) = B(x, y, z) for

xmin + i−1
k ∗ (xmax − xmin) < x < xmin + i

k ∗ (xmax − xmin) andBxi (x, y, z) = 0
for all other voxels. Similarly, we computeor(Byi , B̂

y

i ), CP Iy
i
, or(Bzi , B̂

z

i ) andCP Iz
i

for all i from 1 tok. See Figure 3f for an illustration. In our experiments we setk to
10.

Figure 4 suggests that since the hippocampi all have similar orientations in the
image, the sections can be interpreted as corresponding to rough anatomical regions on
the hippocampus. For example, if we cut the shown hippocampi into sections using
vertical lines as in Figure 3f, the sections to the left correspond roughly to posterior
hippocampal regions, and sections to the right correspond to anterior regions. Likewise,
cutting the hippocampi with horizontal lines divides the structures into sections that run
from their inferior to superior extents respectively. This rough correspondence between
axis-aligned sections and hippocampal regions allows us to meaningfully average the
performance measures for the same section over many trials.

4.6 Statistical analysis: mixed-effects models

We analyze the effects of factors such as registration method, side of the brain, and
disease state on segmentation performance measures through mixed-effects statistical
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models [39] that properly account for fixed effects, random effects, and grouping in
our data. The fixed effects, including disease state, side of the brain, and registration
method, are modeled as additive offsets from a baseline value of the performance mea-
sure. Random effects, such as the random sampling of subjects from an overall patient
population, are modeled as variance components. Each level of each fixed effect is
assigned a coefficient representing the offset it produces from the baseline value; for
example, the fixed effect of disease state would be assigned three coefficients, corre-
sponding to the additive contribution that being a control, MCI, or AD subject has on
the dependent variable. We test for the overall significance of each fixed effect using
Wald tests. Furthermore, we analyze differences between factor levels– for example,
between control, MCI, and AD subjects– by using Wald tests to check for significant
differences between their coefficients. In our analysis, between-group differences refer
to differences in model coefficients between two factor levels. Mixed-effects models
are important for our results for three main reasons. First, they properly account for
the fact that we randomly sampled the subject images from overall populations of AD,
MCI, and control subjects. Second, they model the random selection of cohort atlas
images from a larger population. Third, the mixed-effects models account for repeated
measures in our data; that is, the fact that we measure segmentation performance on the
same subject images repeatedly for different factor levels. All statistics were performed
usingR version 1.9.1. Mixed-effects models were fit using maximum likelihood esti-
mation in thenlme package.

5 Results

The following sections summarize the results of applying atlas-based segmentation
techniques to the 54 images of AD, MCI, and control subjects. First, we explore the
effects of registration method, disease state, and side of the brain on cohort-atlas-based
segmentation (see Section 5.1). The effects of standard atlas, atlas mask, registra-
tion method, side of the brain, and disease state on standard-atlas-based segmentation
performance are investigated in Section 5.2. Differences in performance measures be-
tween cohort-atlas-based and standard-atlas-based segmentation for a particular regis-
tration method are discussed in Section 5.3. Results comparing automated segmenta-
tion performance to manual-manual segmentation agreement are presented in Section
5.4. Additionally, we explore how the quality of segmentation varies across hippocam-
pal sub-regions in Section 4.5.3. Results are discussed in more detail in Section 6.

5.1 Cohort atlases

For cohort-atlas-based segmentation, we fit mixed-effects models in which disease
state, side of the brain, and registration method were fixed effects; the subject and
cohort atlas identity were random effects; and the performance measures were the de-
pendent variables. The overall effects of side, disease, and method on overlap ratio
were statistically significant (p < .0001, p = .0192,p < .0001). The overall ef-
fects of side and method on maximum CPD were statistically significant (p < .0001,
p < .0001), and the effects of side and method on median CPD were statistically sig-
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Figure 5: Overlap ratio as a function of disease state, registration method, and side of the brain for the 54 images using
cohort atlases.

nificant (p < .0001, p < .0001). The effect of disease state on median CPD and
maximum CPD were not statistically significant (p = .959 andp = .412 respectively).

Differences in model coefficients between individual registration methods, disease
states, and sides of the brain were statistically analyzed. Overlap ratio was signifi-
cantly lower in AD compared to MCI (p = 0.0239) and control (p = .011) groups.
No significant difference in overlap ratio was seen between MCI and control groups
(p = .647). No significant difference existed between the FLIRT affine and AIR
affine methods (p = .286). For all other pairs of methods, significant (but in many
cases slight) differences in overlap ratio existed (p < .001). The methods, ranked
in decreasing order of overlap ratio, were as follows: Chen fully-deformable, AIR
semi-deformable, Chen semi-deformable, SPM affine, SPM semi-deformable, FLIRT
affine, AIR affine. In terms of median error magnitude, no significant difference ex-
isted between the Chen semi-deformable method and SPM affine methods (p = .734),
or between the FLIRT affine and SPM semi-deformable methods (p = .0545). For all
other pairs of methods, differences in median error magnitude were statistically sig-
nificant. No significant differences in median error magnitude existed between AD
and MCI (p = .888), AD and controls (p = .872), or MCI and controls (p = .774).
The methods, ranked in increasing order of median error magnitude, were: Chen fully-
deformable, AIR semi-deformable, Chen semi-deformable, SPM affine, SPM semi-
deformable, AIR affine. No significant difference in maximum error magnitude ex-
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Figure 6: Median CPD as a function of disease state, registration method, and side of the brain for the 54 images using
cohort atlases.

isted between AD and MCI (p = .335), AD and control (p = .699), or MCI and
control (p = .208) groups. Furthermore, no significant difference existed between AIR
affine and SPM semi-deformable (p = .295), FLIRT affine and SPM semi-deformable
(p = .087), or AIR semi-deformable and Chen fully-deformable methods (p = .133).
Differences between all other pairs of methods were significant in the model. The
methods, ranked in increasing order of maximum error magnitude, were: Chen fully-
deformable, AIR semi-deformable, SPM affine, FLIRT affine, SPM semi-deformable,
AIR affine, Chen semi-deformable. Box plots showing how overlap ratio, median error
magnitude, and maximum error magnitude vary with disease state, side of the brain,
registration method, and registration method category, are shown in Figures 5, 6, and
7.

Comparing fully-deformable, semi-deformable and affine methods We grouped
the registration methods into fully-deformable, semi-deformable, and affine categories
(See Section 3.3.5) and fit a mixed-effects model in which the fixed effects were the
method category, disease state, and side of the brain; subject and atlas identity were
random effects. Fully-deformable methods had significantly higher overlap ratio and
lower median and maximum error magnitudes than semi-deformable and affine meth-
ods (p < .001 in each case). In turn, semi-deformable methods had significantly higher
overlap raio and lower median and maximum error magnitudes than affine methods
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Figure 7: Maximum closest-point distance between automated cohort-atlas-based segmentations and manual segmentations
for different registration methods, types of registration methods, sides of the brain, and disease states. See Section ??? for a
description of significant differences between groups.

(p < .001 in each case).

5.2 Standard atlases and atlas masks

For standard-atlas-based segmentation, we fit mixed-effects models in which the fixed
effects were the atlas (Harvard vs. MNI), the source of the manual segmentation (R1 vs.
Harvard/MNI), side of the brain, disease state, and registration method; subject iden-
tity was a random effect; and the performance measures were the dependent variables.
Figures 8, 9, and 10 plot the overlap ratio, median error magnitude, and maximum er-
ror magnitude as a function of atlas image and atlas mask, registration method, side of
the brain, and disease state. Results based on R1-traced atlas masks are referred to as
”Harvard By R1” and ”MNI By R1”; results based on atlas masks provided by the atlas
institution are referred to as ”Harvard By Harvard” and ”MNI By MNI” respectively.
Overlap ratio was significantly higher for R1-traced atlas hippocampi than hippocampi
traced by the atlas institution (p < .001). No significant difference in overlap ratio
was seen between the MNI and Harvard atlases (p = .900). Overlap ratio was signif-
icantly higher for right sides of the brain compared to left (p < .001). Overlap ratio
was significantly lower for AD subjects than for MCI subjects (p = .004) and con-
trols (p = .020), but no significant difference was seen between the MCI and control
groups (p = .665). The registration methods, ranked in decreasing order of overlap ra-
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Figure 8: Overlap ratio as a function of disease state, registration method, and side of the brain for the 54 images using
standard atlases.

tio, were: Chen fully-deformable, AIR semi-deformable, Chen semi-deformable, SPM
affine, AIR affine, SPM semi-deformable, FLIRT affine. The difference in overlap
ratio between the SPM semi-deformable and FLIRT affine methods was not statisti-
cally significant (p = .163), nor was the difference in overlap ratio between the Chen
semi-deformable method and AIR semi-deformable method (p = .072). Differences
in overlap ratio between all other pairs of methods were significant (p < .05).

Median error magnitude was significantly lower for R1-traced atlas hippocampi
compared to hippocampi traced by the atlas institution (p < .001). No significant
difference in median error magnitude was seen between the MNI and Harvard atlases
(p = .900). Median error magnitude was significantly lower for right hippocampi
compared to left (p < .001). No significant differences in median error magnitude
were seen between AD and MCI(p = .258), AD and control(p = .212), or MCI and
control (p = .851) groups. Furthermore, no significant differences in error magnitude
were seen between any pairs of registration methods.

Maximum error magnitude is significantly lower in R1-traced atlas hippocampi
than hippocampi traced by the atlas institution (p < .001). Significant differences in
maximum error magnitude were seen between the MNI and Harvard atlases (p < .001).
Differences in maximum CPD between left and right sides of the brain were significant
(p = .034). Significant differences existed between AD and MCI (p = .002) and
AD and control (p = .010) groups, but not between MCI and controls (p = .679).

22



M
ed

ia
n 

C
PD

AIR Affine AIR Semi-
Deformable

Chen Fully-
Deformable

Chen Semi-
Deformable FLIRT Affine SPM Affine SPM Semi-

Deformable

Harvard
By Harvard

Harvard
By R1

MNI
By MNI

MNI
By R1

Left Right AD CTL MCI

Median Error Magnitude Between Manual and Automated Segmentations Using MNI and Harvard Atlases

1
2

3
4

5
1

2
3

4
5

1
2

3
4

5

1
2

3
4

5

M
ed

ia
n 

C
PD

M
ed

ia
n 

C
PD

M
ed

ia
n 

C
PD

Figure 9: Median CPD as a function of disease state, registration method, and side of the brain for the 54 images using
standard atlases.

Differences in maximum CPD were significant between the Chen semi-deformable
method and all methods except the AIR affine method (p < .028). No significant
differences in maximum CPD were seen between any other pair of methods.

5.3 Cohort atlases vs. standard atlases

We directly compared cohort-atlas-based segmentation to standard-atlas-based seg-
mentation using the Chen fully-deformable registration method, which had shown the
highest segmentation performance in experiments described in the previous sections.
We fit mixed-effects models in which the atlas (MNI, Harvard, or cohort atlas), tracer
(R1 or the atlas institution), side of the brain, and disease state were fixed effects, the
subject identity was a random effect, and the dependent variables were the overlap ra-
tio, median error magnitude, and maximum error magnitude. The mean overlap ratio
was significantly higher for cohort-atlas-based segmentation than standard-atlas-based-
segmentation using manual tracings by R1 along with the MNI (p < .001) or Harvard
(p < .003) atlas images. Median error magnitude was significantly lower using co-
hort atlases than either standard atlas with manual tracings by R1 (p < .001 for MNI,
p < .001 for Harvard). Maximum error magnitude was also significantly lower for
cohort atlases than either standard atlas with manual tracings by R1 (p < .001 for
MNI, p < .001 for Harvard). Performance measures for standard atlases using man-
ual tracings from the atlas institution were significantly worse in each case. Figure
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Figure 10: Maximum CPD as a function of disease state, registration method, and side of the brain for the 54 images using
standard atlases.

11 plots performance measures between standard-atlas-based and cohort-atlas-based
segmentation techniques.

5.4 Comparing manual-automated agreement to manual-manual
agreement

Above, our statistical models measured the performance of automated segmentation
algorithms in terms ofmanual-automated agreement, that is, agreement between auto-
matic hippocampus segmentations and manual segmentations performed by an expert
rater. Here, we compare manual-automated agreement tomanual-manual agreement,
or the agreement between manual segmentations performed by pairs of expert human
raters. In so doing, we assess whether switching from manual to automated segmen-
tation significantly increases the variability between the produced segmentation and
one produced by an independent human rater. We selected 2 AD, 2 MCI, and 2 con-
trol images from our pool of subjects and had the hippocampi segmented manually by
human raters R1, R2 and R3. Since rater R1 segmented hippocampi on the full set
of 54 brains, we assess manual-automated agreement in terms of agreement between
R1-rated manual segmentations and the Chen fully-deformable automated technique.
Manual-manual agreement is measured in terms of pairwise agreement between man-
ual segmentations by R1 and R2, R1 and R3, and R2 and R3. Manual-automated
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tion.

agreement for each subject is measured in terms of the average agreement between
its R1 segmentation and the automated segmentations from all cohort atlases in its
disease category. We quantify manual-manual and manual-automated agreement on
a per-hippocampus basis in terms of the performance measures described in Section
4.5– that is, for a pair of segmentations of the same hippocampus (performed by R1,
R2, R3, or the automated technique, respectively), we quantify agreement between
segmentations in terms of the overlap ratio, median error magnitude, and maximum
error magnitude. We fit mixed-effect models with the agreement measures as depen-
dent variables, the type of agreement (manual-manual or manual-automated) and side
of the brain as fixed effects, and subject identity as a random effect. Note that this
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Figure 12: Overlap ratio, median CPD, and maximum CPD between manual and automated segmentations (automatic vs.
manual) and between pairs of manual segmentations (manual vs. manual).

approach differs from the more common approach of measuring agreement between
pairs of raters in terms of hippocampal volumes; the key difference is that our approach
quantifies agreement in terms of how well the segmentations overlap in the brain. Other
approaches, based on estimating automated segmentation performance and the true, un-
derlying structure mask simultaneously, are also available [52]. Manual-manual agree-
ment was not significantly higher than manual-automated agreement in terms of over-
lap ratio (p = .0916). Furthermore, differences in median and maximum error mag-
nitude were not significant between manual-manual agreement and manual-automated
agreement (p = .775 andp = .455 respectively). Box plots comparing the distribu-
tion of agreement measures for manual-manual and manual-automated agreement are
shown in Figure 12.

5.5 Sectional results

Figures 13, 14, and 15 plot mean overlap ratios for hippocampal sections along the
three cardinal directions of our data set. The three cardinal directions correspond
roughly to the posterior-anterior, medial-lateral, and superior-anterior hippocampal
axes, respectively (see Section 4.5.3 and Figure 4). For all methods, the hippocam-
pal sections most responsible for segmentation error are located at the extremities of
the hippocampus, especially at the superior, inferior, medial, and lateral ends. With the
exception of the most extreme sections, mean overlap ratio is generally higher toward
the lateral extent of the hippocampus and lower toward the medial extent (Figure 13).
Furthermore, with the exception of the most extreme sections, mean overlap ratio is rel-
atively constant with respect to anterior-posterior position (Figure 14). Finally, moving
from the superior to inferior extent, mean overlap ratio increases steadily, reaches a
peak at the central sections, and decreases toward the inferior end (Figure 15). These
distributions of mean overlap ratio do not vary significantly with respect to disease
state, side of the brain, or registration method. In particular, it does not appear that
the registration techniques vary significantly with respect to how overlap is distributed
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Figure 13: Overlap distance measures broken down along medial-lateral line for automatic registration methods and manual
raters on control, MCI, and AD images. See text for details.

across hippocampal sub-regions. Furthermore, these patterns of manual-automated
overlap across sub-regions are similar to patterns of manual-manual overlap on the 6
selected images, although the human raters are relatively more consistent at the lateral
extent.

Figures 13, 14, and 15 plot the mean median error magnitude and mean maximum
error magnitude across hippocampal sections. The mean median error magnitude is
higher at the extremities, especially at the medial, posterior, and superior extents. How-
ever, the mean maximum error magnitude does not vary significantly with respect to the
position of the hippocampal sub-region, although the mean maximum error magnitude
is slightly higher at the posterior (Figure 14) and medial (Figure 15) extremities. The
automated methods are largely competitive with manual raters in terms of mean median
CPD at the central hippocampal sections; mean maximum error magnitude is compet-
itive with human raters in medial, superior, and anterior sections. Interestingly, while
the distributions of manual-automated mean overlap ratio are highly similar to the dis-
tributions of manual-manual mean overlap ratio, the corresponding patterns of mean
median error magnitude and mean maximum error magnitude differ significantly. In
particular, error voxels for pairs of manual raters are markedly closer to the hippocam-
pal surface at the lateral extent, at the central sections along the posterior-anterior axis,
and at the inferior extent. The fact that human raters are able to more consistently
segment those sub-regions suggests that it would be possible to optimize automated
methods to segment these sub-regions more effectively.
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Figure 14: Overlap distance measures broken down along posterior-anterior line for automatic registration methods and
manual raters on control, MCI, and AD images. See text for details.

6 Discussion

This section summarizes our results in terms of which factors led to higher or lower
performance measures in the atlas-based segmentation experiments. A ”>” between
two factor levels indicates that the overlap was higher, and/or the error magnitudes
were lower, for the first factor level compared to the second.

Fully-deformable > semi-deformable≥ affine Our results confirm the intuition
that methods making use of more highly-deformable geometric transformation mod-
els tended to be able to fit the complex shape of the hippocampus more accurately
than less-deformable geometric models. We believe that the AIR semi-deformable
technique performed better than competing semi-deformable methods because the ”de-
formability” of its geometric transformation–i.e., the degree of its polynomial basis–
was allowed to gradually increase over the course of optimization, while the geometric
transformations for the Chen and SPM semi-deformable techniques were fixed in their
spatial structure. Furthermore, as mentioned above, SPM is explicitly biased toward
minimally-deforming transformations, which may steer its geometric transformation
away from highly-accurate fit of the hippocampal surface.
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Figure 15: Overlap distance measures broken down along superior-anterior line for automatic registration methods and
manual raters on control, MCI, and AD images. See text for details.

Human-human agreement≈ automated-human agreement for fully-deformable
registration Results suggest a general trend toward higher manual-manual agree-
ment compared to manual-automated agreement (see Figures 13 and 12), but the dif-
ferences are not statistically significant. Thus, while there may be room for improve-
ment of the automated methods, Chen’s fully-deformable method can be competitive
with the human raters in terms of overlap, median error magnitude, and maximum
error magnitude. Automated methods may be competitive for elderly hippocampus
segmentation applications, especially those that can tolerate minor errors in the spatial
localization of the hippocampus.

MCI ≈ controls> AD Overall performance measures are significantly lower among
AD subjects than MCI or control subjects. One possible explanation for these results
is that the degenerative proccesses of AD make image registration inherently more
difficult and ambiguous by reducing tissue contrast and/or inducing a high degree of
variability in the geometric characteristics of brain structures such as the hippocam-
pus. Another possible explanation is that registering pairs of AD images is no more or
less difficult than registering MCI or elderly control brains, but that standard software
packages are not optimized for the task. Similarly, the fact that overlap ratios for MCI
and control cases are similar could suggest that their image characteristics do not differ
so significantly that they affect registration.
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Figure 16: Closest-point distance measures broken down along medial-lateral line for automatic registration methods and
manual raters on control, MCI, and AD images. See text for details.
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Figure 17: Closest-point distance measures broken down along posterior-anterior line for automatic registration methods
and manual raters on control, MCI, and AD images. See text for details.
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Figure 18: Closest-point distance measures broken down along superior-anterior line for automatic registration methods and
manual raters on control, MCI, and AD images. See text for details.
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Figure 19: Comparison of manual hippocampus segmentations on the MNI atlas provided by MNI and Rater R1. In the
bottom row, points in white are in overlap between the two tracings, and points in gray are in the MNI tracing only. Note
that the MNI tracing is significantly larger than that by R1.

Right > left A striking bilateral asymmetry in automated segmentation performance
measures is seen in all experiments, across all three disease groups. These results
echo the slight bilateral asymmetry in atlas-based hippocampus segmentation results
shown by Duchesneet al. [17]. However, a mixed-effects model fit to solely manual-
manual agreement data shows no significant bilateral asymmetry in manual-manual
overlap ratio (p = 0.12), median error magnitude (p = 0.0681), or maximum error
magnitude (p = 0.6811). Our initial calculations of hippocampal volumes do not show
a significant volume asymmetry, echoing the findings of Bigleret al. [2], but it is
possible that age- and AD-related atrophy has caused other morphological changes,
such as hippocampal shape deformation or decreased tissue contrast, on the left side of
the brain. These asymmetric changes could confound automated techniques in a way
that expert human raters were able to compensate for. However, further investigation
is needed to explain this bilateral effect.

Cohort-atlas-based≥ standard-atlas-based Results from our mixed-effects mod-
els suggest that randomly selecting cohort atlas images from a population leads to
higher automated segmentation performance than standard-atlas-based segmentation,
independent of differences in manual segmentation protocols between institutions. This
confirms our intuition that differences in brain morphology and image acquisition
characteristics between atlas and subject images can negatively impact performance
of atlas-based segmentation. In particular, differences in brain structure between the
young, healthy individuals scanned for standard atlas images and the elderly subjects in
our study could pose additional challenges to accurate image registration and segmen-
tation. Future work should investigate the ways in which discrepancies in morphology,
image acquisition parameters, and scanning equipment impact atlas-based segmenta-
tion results.

Posterior ≈ anterior, lateral > medial, center> periphery The sectional results
presented in Section 4.5.3 suggest that segmentation errors are evenly distributed be-
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Figure 20: Two coronal slices from an example MCI image show areas where the hippocampus is bounded by gray matter
and CSF on the lateral side, and entirely by gray matter on the medial side. Coronal slices A and B are shown magnified to
show the region denoted by the green box. Voxels labeled as belonging to the hippocampus by rater R1 are shown in white
in the bottom row. Note that hippocampus-CSF boundaries are relatively sharp and distinct, while interfaces with other gray
matter structures are relatively subtle.

tween posterior and anterior regions of the hippocampus, are more concentrated in the
medial regions than the lateral regions, and are generally more highly concentrated to-
ward the periphery than the center. One possible reason for the medial skew in errors
is that CSF forms part of the lateral boundary of the structure over its entire anterior-
posterior extent, while in some regions, the medial boundary consists entirely of subtle,
ambiguous interfaces with other gray-matter compartments (See Figure 20). We sug-
gest that the sharp contrast between gray matter and CSF forms a strong visual cue that
the automated methods take advantage of to more accurately localize the lateral bound-
ary. Interestingly, our finding that agreement between pairs of human raters does not
vary significantly along the anterior-posterior direction except at the extreme periphery
contrasts with the inter-rater consistency maps shown by Thompsonet al. [49], which
suggest that manual tracings are relatively more consistent in the anterior sections. A
possible explanation for this discrepancy is that the consistency measure of Thompson
et al. is based on agreement between raters in radial distances from the medial axis
of the hippocampus to its surface, and therefore could be more sensitive in posterior
sub-regions where the radial distances are relatively small.

Manual tracing protocols add significant variability Geuzeet al. recently de-
scribed a dizzying array of existing protocols for manually segmenting the hippocam-
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pus in MR [22]. Our results (see Figure 8 indicate that discrepancies between these
manual protocols can add a highly significant source of variation to what portion of the
brain can be expected to be labeled as hippocampus, both in manual segmentation and
atlas-based automated methods. Figure 19 gives an example of the significant discrep-
ancies between manual segmentations of the MNI atlas image produced by R1 and by
MNI. We emphasize that we are not suggesting that the manual segmentation protocol
used by R1 is superior or inferior to those employed for the Harvard or MNI atlases;
rather, we have showed that variations in the resulting hippocampi can be significant.
Therefore, we suggest that researchers using standard atlas images for atlas-based seg-
mentation should examine the atlas masks and tracing protocols closely to be sure the
delineation conventions employed match those of their own laboratory. If they do not,
our results have shown that tracing the structure on the standard atlas or on a randomly-
selected subject image leads to automated segmentations whose agreement with expert
manual segmentations is competitive with manual-manual agreement.

7 Conclusion

Atlas-based segmentation is a simple, automated method for hippocampus segmenta-
tion that can use standard image registration techniques to produce reasonable structure
delineations in images of elderly controls and subjects with MCI and AD. While addi-
tional work is needed to make these automated techniques truly competitive with expert
human raters, their performance may be acceptable for image proccessing applications
that can tolerate a small amount of hippocampus localization error. While standard
digital atlases from MNI, Harvard, and other institutions allow investigators to apply
atlas-based segmentation to their subject images with no need for manual labeling, care
must be taken to insure that hippocampus tracing protocols from the atlas institution
coincide with those of the investigator.
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