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ABSTRACT

A system is described for acquiring multi-view video of a
person moving through the environment. A real-time track-
ing algorithm adjusts the pan, tilt, zoom and focus param-
eters of multiple active cameras to keep the moving person
centered in each view. The output of the system is a set
of synchronized, time-stamped video streams, showing the
person simultaneously from several viewpoints.

1. INTRODUCTION

For applications in human identification, activity recogni-
tion, 3D reconstruction, entertainment and sports, it is often
desirable to capture a set of synchronized video sequences
of a person from multiple camera viewpoints (see Figure 1).
One way to achieve this is to set up a ring of cameras all
statically aimed at a single point in space, and to have an
actor perform at this fixation point while the video footage
is shot. This is the method used to create spectacular spe-
cial effects in the movie The Matrix, where playing back
frames from a single time step, across all cameras, yielded
the appearance of freezing the action in time while a virtual
camera flew around the scene. However, in surveillance or
sports applications it is not possible to predict beforehand
the precise location where an interesting activity will occur,
and therefore it is necessary to dynamically adjust the fixa-
tion point of multiple camera views. We have developed a
system that tracks a person in real-time and adjusts the pan,
tilt, zoom and focus of each camera to acquire synchronized
multi-view video of a person moving through the scene.

2. SYSTEM DESIGN

The system design emphasizes modularity of each individ-
ual camera by minimizing the amount of information each
camera has about the other cameras. Such modularity is
useful in practical situations since all cameras may not nec-
essarily be installed at the same time – in fact, new cam-
eras may be added, and some may malfunction and be re-
moved, even while the rest of the system is running. To
achieve this level of modularity, each camera is calibrated
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Fig. 1. The goal is to use multiple active cameras to ac-
quire synchronized views of a moving person from multiple
viewpoints.

independently with respect to a 3D scene coordinate sys-
tem, and intercamera relationships are only implicitly rep-
resented through their joint individual relationships with the
3D scene. The cameras communicate by passing geomet-
ric “messages” through the shared 3D scene geometry. For
example, there is no explicit representation of the epipolar
geometry between any pair of cameras. A viewing direc-
tion from camera A is transformed into a 3D oriented ray
in scene coordinates, which when projected into camera B
essentially defines the appropriate epipolar ray. In this way,
each camera can be treated independently, leading to a sys-
tem in which truly distributed multi-camera processing can
occur.

(a) (b)

Fig. 2. (a) Block diagram of a single camera module for
actively acquiring time-stamped video of a moving person.
(b) Prototype hardware implementation of this module.

Figure 2a shows a block diagram of one active cam-
era module. A computer CPU is connected to a camera
mounted on a pan/tilt device. This CPU is responsible for



processing video from the camera, and based on the results
it adjusts pan, tilt, zoom and focus parameters to maintain
tracking, e.g. to keep the tracked person centered in the im-
age. The camera is synchronized to a common system-wide
genlock signal, so that the shutter for each camera fires at
precisely the same time, resulting in video frames taken
at the same time instant. Video from the camera is time-
stamped using a VITC time code generator that inserts a
system-wide time stamp directly into the vertical blanking
interval of the video signal. This video branches both to the
tracking CPU, and to a hard drive for recording. The track-
ing CPU communicates with other camera modules through
a local area network.

(Figure 2b) shows a hardware prototype of this cam-
era subsystem. The camera body is a Sony DXC-950, 3
CCD color camera that produces interlaced NTSC video
output. To that is mounted a Canon YH18x6.5 motorized
zoom lens. At high zoom, this lens has approximately a four
degree field of view. The pan/tilt head consists of the first
two joints of a Mitsubishi Heavy Industries industrial robot
arm. This head was chosen for its accuracy, repeatability,
and ability to carry a moderately heavy payload. A small
industrial computer running the VxWorks operating system
provides real-time image processing and camera control.
Not shown in the picture is a Linux PC containing the RAID
disk to which full-frame color video is streamed at 30 frames
per second.

3. ACTIVE TRACKING ALGORITHMS

Each camera module actively adjusts its pan, tilt, zoom and
focus to track a target person in real-time, as described be-
low. Since single-camera tracking is sensitive to occlusions
and clutter, the set of camera modules communicate to fuse
their individual location estimates into a 3D estimate of the
person’s location in the scene. Cameras that lose track of the
person can thus recover, as long as some subset of cameras
has continued to correctly track the person.

3.1. Single-camera tracking

Much previous work in people detection and tracking for
surveillance uses adaptive background subtraction [1, 2, 3,
4]. However, in the current system it is necessary to track
a moving person while the camera is panning, tilting and
zooming. Although theoretically video from a rotating and
zooming camera can be registered and subtracted from a
panoramic mosaic [5], adaptation to lighting changes is dif-
ficult since the whole panoramic scene is not being viewed
continuously, and there are issues in representing panora-
mas at multiple scales when variable camera zoom is present.

To track objects from a continuously moving camera,
we use the mean-shift algorithm [6, 7]. Each pixel in a win-

dow of interest within the incoming video frame is assigned
a likelihood of belonging to the person being tracked, us-
ing an appearance model learned when the person was first
sighted. This likelihood map represents an implicit prob-
ability distribution on the location of the person in the 2D
video frame. The mean-shift algorithm is a non-parametric
method for rapidly finding the nearest local mode of this
distribution (Figure 3). The 2D location found is used to
control the camera pan and tilt parameters to keep the per-
son in the center of the image.

Fig. 3. Two-dimensional tracking is achieved by applying
the mean-shift algorithm to an image where pixel values
represent likelihood of belonging to the tracked person. The
mean-shift algorithm is a non-parametric method for climb-
ing to the nearest local mode of this likelihood map.

We currently use a simple appearance model based on
a histogram in normalized color space of the pixel colors
falling within a rectangle centered on the person. Future
work will improve the appearance model to incorporate mul-
tiple cues including texture, shape and predicted motion.

3.2. Multi-camera location updates

Camera modules communicate to achieve a consensus on
the person’s 3D location. This allows cameras that have a
good view of the person to aid other cameras with poor or
occluded views. Once per second, each camerai broadcasts
a time-stamped UDP packet containing its 3D focal point
locationci , its principal viewing ray orentationui computed
from current pan and tilt angles, and a weightwi that spec-
ifies how confident the camera is in its current tracking re-
sults. The message from each camerai thus constrains the
person to lie along a 3D rayci +kui , with k being a positive
distance along the ray. When two or more cameras view the
same person, an estimate of the person’s 3D location can be
computed via triangulation of these viewing rays (Figure 4).
Due to inaccuracies, these rays will not intersect exactly at
a single point, but we can compute apseudo-intersection
point P that minimizes the sum of squared distance to each
pointing ray. PointP is found as the solution to the linear



system of equations
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This 3D estimated locationP is used to adjust the pan/tilt
angles of each camera, to an extent that depends on the cam-
era’s tracking confidencewi . Cameras from which the per-
son is occluded can therefore continue to track the virtual
position of the person from their viewpoint. The distance
from estimated 3D locationP to each camera’s locationci

can be used to control camera zoom and focus to keep the
person the same size and in sharp focus in all the images,
even though the cameras are different distances away from
the person.

Fig. 4. Multiple camera viewing rays are fused into a single
object location estimate by finding the pseudo-intersection
point P that minimizes sum of squared distance to each
pointing ray.

4. CAMERA CALIBRATION

Before operation of the system, each camera is calibrated
so that its relationship to the scene is explicitly known. This
requires determining the pose (location and orientation) of
the camera with respect to a scene coordinate system, de-
termining the relationship of the zoom control parameter to
angular field of view, and determining the relationship of
the focus control parameter to the distance of objects in the
scene.

Camera pose is determined by measuring pan/tilt an-
gles towards a set of distinguished points or “landmarks”
with known 3D coordinates. The 3D landmark points are
determined prior to calibration by surveying with a GPS
unit or theodolite. Sighting each landmark involves rotating
the pan/tilt device from a user interface, until the landmark
point is centered within the field of view of the camera. The
pan/tilt parameters at this position are then stored with the
X,Y,Z coordinates of the landmark, to form one pose cali-
bration measurement. Camera orientation R and location c
are determined by an optimization procedure that minimizes

the angle between pan-tilt viewing rays rotated by R and di-
rection vectors from the camera origin c to the 3D landmark
points. The basic pose solution method is presented in [8].

Computer control of motorized zoom lenses involves
sending the desired zoom and focus as a command to the
camera/lens system. The effect of the value of these param-
eters on physical lens settings must be determined through
calibration. The zoom parameter is calibrated by stepping
through the allowable values and measuring the field of view
after the motorized zoom is complete. User control of the
pan/tilt head is used to actively and directly measure the
field of view at each setting. Some visible landmark is cho-
sen in the scene, roughly level to the pan/tilt device. The
head is then directed by hand to find the left and right pan
angles that bring the landmark to the far right and left edges
of the image. Alternatively, an automated method based on
self-calibration via active camera rotation can be used [8].

The relationship between focus parameter value and ob-
ject distance is calibrated by focusing on objects at different
distances from the camera, and deriving an implicit rela-
tionship between focus value and distance. This implicit
relationship is represented as a lookup table of focus pa-
rameter settings, indexed by inverse distance to the desired
focal distance in the scene. Focus to points at intermedi-
ate distances is determined by interpolation of these stored
table values. A table indexed by inverse object distance is
preferrable to one indexed by distance, since good results
can be achieved using only linear interpolation on a sparse
set of distance/focus measurements.

5. SAMPLE RESULTS

A three-camera prototype system has been built in the Vir-
tualized Reality lab at Carnegie Mellon University. This
small demo system is used as follows. Initially, the room
is empty, and a background model is acquired from each
camera. A person then enters the room, and is detected by
background subtraction and thresholding. Pixels that are
determined to be part of the person’s silhouette are used to
estimate a normalized color histogram, which forms the ap-
pearance model for the mean-shift tracking algorithm. After
the appearance model is acquired, the cameras begin active
tracking and recording as the person moves throughout the
space.

Figure 5 shows sample results from one recording ses-
sion. Each row shows corresponding frames from each of
the three cameras for a specific time sample. During record-
ing, the demo tracking system automatically adjusted the
pan and tilt parameters of each camera in real-time to keep
the person’s torso centered in each image.
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Fig. 5. (a)-(c) One time sample from synchronized video taken by a three-camera system that actively acquires multi-view
video by controlling pan and tilt of each camera in real-time. (d)-(e) Another time sample from the same recording session.

6. SUMMARY

A system has been developed for acquiring multi-view video
of a person moving through the scene. The approach is to
use a real-time appearance-based tracking algorithm to con-
trol the pan, tilt, zoom and focus parameters of multiple
active cameras. The output of the system is a set of syn-
chronized, time-stamped video streams of the person, seen
simultaneously from several viewpoints. The system de-
sign emphasizes the modularity of each individual camera
subsystem by minimizing the amount of information that
each camera has about the other cameras. The cameras
communicate by passing geometric “messages” through the
shared 3D scene geometry, enabling a distributed approach
to multi-camera active tracking.
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