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ABSTRACT

Most pathologies (tumor, bleed, stroke) of the human brain can be determined by a symmetry-based analysis of
neural scans showing the brain's 3D internal structure. Detecting departures of this internal structure from its
normal bilateral symmetry can guide the classi�cation of abnormalities. This process is facilitated by �rst locating
the ideal symmetry plane (midsagittal) with respect to which the brain is invariant under re
ection. An algorithm to
automatically identify this bilateral symmetry plane from a given 3D clinical image has been developed. The method
has been tested on both normal and pathological brain scans, multimodal data (CT and MR), and on coarsely sliced
samples with elongated voxel sizes.
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1. INTRODUCTION

Normal human brains present an approximate bilateral symmetry with respect to their midsagittal planes, this
symmetry is often absent in pathological brains. Most pathologies (tumor, bleed, stroke) of the human brain can be
determined by a symmetry-based analysis of neural scans showing the brain's 3D internal structure (Figure 1). Such
asymmetries are caused either by mass e�ect, which is the displacement of anatomical structures away from their
normal positions, or by a density imbalance due to lesion in or around the brain. Detecting departures of this internal
structure from its normal bilateral symmetry can guide the classi�cation of abnormalities. This process is facilitated
by �rst locating the ideal symmetry plane (midsagittal) with respect to which the brain is invariant under re
ection.
The bilateral symmetry of the brain is easily seen in CT and MR images depicting axial and coronal slices (Figure 1).
However, automatic extraction of the 3D plane of bilateral symmetry is di�cult due to a number of factors. First,
there is no enforced standard among technicians when taking brain scans. Each set of slices may di�er from other sets
in the angle of scanning, the start and end positions of the scan, the distance between adjacent slices, and the total
number of slices. Second, the patient's head may be tilted during the scanning process or moved midway, resulting
in a set of slices on which the brain does not appear to be perfectly symmetrical. Third, the human skull and brain
are only approximately symmetric { asymmetries such as air pockets and the presence of lesions must be ignored
when computing the axis of symmetry, so that window-based or segmentation-based approaches1 are likely to fail.
Fourth, clinical brain slice images sometimes contain background clutter in the form of patient data superimposed
directly on the image, which must be ignored. And �nally, clinical brain scans typically consist of coarsely-spaced
slices with elongated voxel sizes (e.g. voxel sizes of 1:1:20 (mm3)) and with only a subportion of the brain visible in
the set of scans. Table 1 shows the parameters of a few sample input image sets. Due to the fact that the voxels
of some 3D images can be far from cubical, the algorithm described here is a pixel-based instead of voxel-based 3D
image algorithm. Unlike the �nely sampled research data containing the entire brain used by most neurological image
understanding researchers, this kind of input makes it di�cult to infer 3D structure by interpolating the missing
data between slices. Studying algorithms that deal with real clinical images originates from our desire to facilitate
on-line clinical image indexing and retrieval for real-time medical consultation.6

We have developed a simple yet robust algorithm that can extract the bilateral symmetry plane of a brain from
a set of clinical CT or MR images, regardless of coarse spacing or partial sampling, background clutter, asymmetries
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Figure 1. A typical set of clinical CT scans (axial), only captures a portion of a patient's head, as shown in a side
view on the lower right corner. This is a case of acute right basal ganglion bleed.

of the skull, presence of mass e�ect and brain pathologies such as tumors, bleeds or stroke. The rotation errors
existing in the image can be up to �90 degrees. The results agree to within one degree of rotation with those
achieved by a human expert. In contrast to most current symmetry detection algorithms ,4,8,16,18 the symmetry
plane/axis is not simply extracted where it appears (for normal brains) but where it is supposed to be (for pathological
brains). Although maximization of mutual information theory has been applied successfully for multimodality brain
registrations under rigid and sometimes a�ne transformations,7,12,15,17 we have not found it capable of extracting
the ideal symmetry plane for pathological brain data, which can exhibit severe assymetries. In Section 2 we present
the underlying geometry of our new symmetry extraction algorithm (Section 2.1), the algorithmic steps (Section
2.2), and experiment results and evaluations (Section 2.3). Section 3 concludes the paper with a brief summary and
future work.

2. 3D BILATERAL SYMMETRY PLANE EXTRACTION

Neuroradiology scans are in nature 3D volumetric data expressed as a stack of 2D images. In this section we present
a geometric analysis and working algorithm for extracting the brain's 3D bilateral symmetry plane from this set of
2D image slices.

We de�ne an ideal head coordinate system centered in the brain with positive X0; Y0 and Z0 axes pointing in
the right, anterior and superior directions respectively (Figure 2, white coordinate axes).13 With respect to this
coordinate system, the bilateral symmetry plane of the brain is de�ned as the plane X0 = 0. This plane is often
referred to as the mid-sagittal plane of the brain. Ideally, a set of axial (coronal) slices is cut perpendicular to the
Z0(Y0) axis, and the intersection of each slice with the bilateral symmetry plane appears as a vertical line on the
slice�. In clinical practice, due to various positioning errors, we are presented not with the ideal coordinate system,

�The analysis given to the axial slices from now on can be applied to coronal slices (cut along the Y axis) as well with corresponding
symbols changed: `Z' to `Y'.



Table 1. A Subset of Input 3D Image Data

Set Modality #Slices Form and Size Voxel (mm) Pathology

1 CT 18 axial 0.5x0.5x2 (1-10) Right occipital/parietal
664x534 0.5x0.5x10 (11-18) acute bleed

2 CT 19 axial 0.5x0.5x5 (1-11) Basal ganglion
524x518 0.5x0.5x10 (12-19) acute bleed

3 CT 33 axial 0.5x0.5x5 (1-15) right parietal/occipital
enhanced 686x550 0.5x0.5x10 (16 - 33) meningioma

4 MR 187 axial 0.98x0.98x1.2 Normal
176x236

5 MR (T1) 123 coronal 0.9375x0.9375x1.5 Atlas, Normal
256x256

6 CT 16 axial 0.5x0.5x10 Basal ganglion
686x550 acute bleed

7 CT 9 axial 0.5x0.5x10 Right thalamic
686x550 acute bleed

8 CT 17 axial 0.5x0.5x5 (1-9) Frontal astrocytoma
678x542 0.5x0.5x10 (10-17) high grade glial

but rather a working coordinate system XYZ in which X and Y are oriented along the rows and columns of each
image slice, and Z is the actual axis of the scan (Figure 2, black coordinate axes). The orientation of the working
coordinate system di�ers from the ideal coordinate system by three rotation angles, pitch, roll and yaw, about the
X0, Y0 and Z0 axes, respectively.
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Figure 2. Ideal head coordinate system X0Y0Z0 vs. the working coordinate system XY Z. Rendered head courtesy
of the Visible Human Project.



2.1. Geometry of the Symmetry Plane

Under the working coordinate system, the bilateral symmetry plane can be represented as

aX + bY + cZ + d = 0; (1)

and the ith axial slice by the plane equation Z = Zi. The symmetry axis (a 2D line) on the ith slice is the intersection
of the above two planes:

aX + bY + (cZi + d) = 0: (2)

By examining this line equation, we can make two immediate observations. First, the orientation angle of each 2D
symmetry axis, namely �i = arctan(b=a), should be the same for all slices regardless of their Zi position. Secondly,
the o�set transi of the symmetry axis on slice Z = Zi exhibits a simple linear relationship with Zi, namely

transi = cZi + d (3)

from which, given the translational o�set of at least two symmetry axes on di�erent slices, we can compute symmetry
plane parameters c and d by solving a set of linear equations. These observations form the basis for the symmetry
plane extraction algorithm described in the next section.

Further analysis shows how the observable quantities (the 2D symmetry line orientation �i and translation transi
for each axial slice) are related to the 3D pose of the working coordinate system. Under the ideal coordinate system,
the 3D orientation of the bilateral symmetry plane is (1; 0; 0). Due to tilting of the patient's head, and an arbitrary
decision by the technician as to the pitch angle, points in the ideal coordinate system are reoriented into the observed
working coordinate system by an unknown general rotation

R = yaw(�)roll(�)pitch(!)

=
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where c� � cos �; s� � sin �; and so on. This rotation transforms the unit normal of the symmetry plane from (1; 0; 0)
to

R(1; 0; 0)T = (cos� cos �; cos� sin �;� sin�)T :

Thus, the symmetry plane equation can be rewritten in terms of its yaw and roll angles as

cos� cos �X + cos � sin �Y � sin�Z + d = 0

Matching up our plane parameters a; b; c (Equation (1)) with this equation, we �nd by inspection that

tan � = b=a (4)

tan� = �c=
p
(a2 + b2) : (5)

That is, the shared angle � = �i of each axial slice is actually the yaw angle of the head's working coordinate system.
Furthermore, the roll angle � is determined by the o�sets of the symmetry axes on the set of slices. From equations
(3) and (5), when the roll angle � is zero, c = 0, and thus transi = d; otherwise transi varies from slice to slice.
Finally, the quantity d=

p
(a2 + b2) represents the perpendicular distance of the bilateral symmetry plane from the

origin of the working coordinate system, and therefore also represents the o�set of the working coordinate system
from the origin of the ideal head coordinate system (which lies on the symmetry plane) in the direction normal to
the plane.

In summary, if we can extract the 2D axes of re
ectional symmetry from a set of axial slices, we can completely
determine the the geometric equation aX + bY + cZ + d of the ideal 3D bilateral symmetry plane of the head.
Furthermore, we can infer from this equation some of the 3D pose parameters of the patient's head, namely the
yaw angle �, roll angle � and the translational o�set from the ideal coordinate system origin along the unit normal
direction (cos � cos �; cos� sin �;� sin�)T :



2.2. Symmetry Plane Extraction Algorithm

The geometric results from the previous section have been used to develop an algorithm for automatically detecting
the bilateral symmetry plane of a neural brain scan. The input is a set of CT or MR images from an axial (or coronal)
brain scan, along with its voxel dimensions. The format of the images we currently receive varies from scanned-in
8-bit gray images, with an average size of 650� 550, to 16-bit DICOM3 format raw images with a standard size of
256 � 256. Although both image formats are dominated by the patient's head, the former often contains addition
clutter in the form of patient data and acquisition parameters, as well as the physical cross-section of the headrest,
superimposed on the slice (Figure 7). We have developed a simple procedure for preprocessing each slice to remove
this clutter and thereby isolate just the head region by adaptively thresholding to produce a binarized image, and
choosing the largest connected region in that image (details can be found in5).

2.2.1. Estimating the Symmetry Axis Orientation �i ! �

As indicated in our geometric discussion, each 2D symmetry axis should have the same orientation �, which also
corresponds to the yaw angle of the patient's head. We begin by extracting an estimate of this angle from each 2D
axial slice, then combining the measurements to form a single best estimate.

To estimate the orientation �i of the 2D symmetry axis of image Si, representing axial slice Z = Zi, we refer
to the de�nition of bilateral symmetry: a re
ection of a bilaterally symmetric image Si about its symmetry axis
produces a �gure S0i that is approximately identical to Si. We thus search for the orientation of the re
ection line
that maximizes the cross-correlation between the original image and the rotated, re
ected image. First the image
Si is re
ected about its vertical center line, to produce a new image refV (Si) (note: this does not assume that the
symmetry axis is the vertical center line of the image). If the re
ection axis of Si (Figure 3a) is oriented � degrees
from vertical, then the symmetry axis of refV (Si) (Figure 3b) will be oriented �� degrees from vertical, regardless
of where it appears in the image. Therefore, to evaluate a candidate orientation �j within some range, we rotate
refV (Si) by 2�j about the center of the image, cross-correlate with the original image Si, and record the maximum
correlation value. Formally, the maximum cross-correlation value C maxi(�j) for brain slice i at angle �j can be
expressed as C maxi(�j) = max(Ci(�j)(x0; y0)), where

Ci(�j)(x
0; y0)) =

x0X
x=1

y0X
y=1

S0i(x+ x0; y + y0)� Si(x; y)

and S0i = rot(2�j ; refV (Si)); size(Si) = size(S0i) = [x0; y0]; x
0 2 [�x0; x0]; y

0 2 [�y0; y0], and S0i(x; y) = 0 when
x < 1; x > x0; y < 1; or y > y0.            

(a) (b)

Figure 3. a) A CT axial Head image Si. b) Vertically re
ected image refV (Si).

Recall that the 2D cross-correlation result Ci(�j)(x
0; y0) is a 2 dimensional array double the size of the original

image in both X and Y dimensions. Elements in the array contain correlation values for all possible horizontal and
vertical disparities between the original image and the rotated re
ected image (Figure 4), and thus re
ecting Si
about the vertical center line, and rotating refV (Si) about the center of the image before doing cross-correlation,
does not miss any possible solutions. That is, our method of computing symmetry axis orientation is invariant to
any translation of that axis in the image.



Figure 4. The image of the correlation result: a 2D image where the density of each pixel (x; y) records the
correlation score at that relative shifted location of the two images Si and rot(2�j; refV (Si)). The brightest point
indicates the highest correlation score.

The maximumvalue of the cross-correlation surface is evaluated for each �j within a range of candidate symmetry
axis orientations. For e�ciency the actual search is performed in frequency spacey. That is,

Ci(�j) = max fXCorr(Si; rot(2�j ; refV (Si)) g

= max
�
F�1(F�(Si)rot(2�j ; refV (F(Si))))

	
where F�(Si) is the complex conjugate of Fourier transform of Si and F�1 is the inverse Fourier transformation.10,11

In most instances a single, well-de�ned peak occurs in each cross-correlation surface Ci(�j) (Figure 4), as well as in
the plot C maxi(�j) formed by plotting the maximum cross-correlation value for a range of candidate symmetry axis
angles �j (Figure 5). We choose as an estimate �i of the best symmetry axis orientation for slice Si the value of �j
that produces the highest peak in the plot of max correlation score vs. angle, that is, �i = arg max(C maxi(�j)).

Since all brain slices in the scan should have the same 2D symmetry axis orientation (Equation 2), it is necessary
to combine results from each slice to produce a reliable cumulative estimate of the yaw angle �. Several methods have
been tested, falling into two broad categories: either combining the �i estimates for each slice, or by combining the
cross-correlation vs. angle plots C maxi(�j) directly. The methods that have been tested are (1) mean value of �i over
all slices, (2) weighted mean of �i, giving the lower slices more weight, (3) median of �i, (4) arg max(�iC maxi(�j)),
that is, the �j index of the highest peak in the sum of the cross correlation vs. angle curves for each slice, and (5)
same as (4), but after smoothing the cumulative curve with a Gaussian �lter. The experiment results show (1) and
(2) are almost indistinguishable (less than 0.3 degree di�erence), and (4) gives the best overall result (Section 2.3).

2.2.2. Determining the Symmetry Plane Equation

Having computed an estimate � that best describes the shared orientation of each 2D bilateral symmetry axis, we
then compute an o�set transi of the symmetry axis of each slice. Each image Si is rotated by an angle �� so that its
symmetry axis should be oriented vertically in the image. That image is then cross-correlated with a vertical re
ection
of itself taken about the center of the image. The column at which the two produce the highest cross-correlation
value is chosen as the value of transi for that slice.

Given estimates � and transi for each slice, it is then possible to compute the four parameters of the 3D bilateral
symmetry plane (Equation 1). From Equation 2.1, and keeping in mind we can divide all parameters by a constant,
we have a = cos � and b = sin �. To compute values for symmetry plane parameters c and d, recall that the simple

yNote that since the Fourier transform F commutes with rotations and vertical re
ections, we only have to compute the Fourier
transformation of Si once { the 
ipped and rotated versions can be generated directly in frequency space by 
ipping and rotating the
image F(Si).
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Figure 5. Plot of the maximum cross-correlation, C maxi(�j ), between rot(2�j ; refV (S)) and S, for �j between -16
and 4 degrees sampled at every 1 degree.

linear relationship (Equation 3) de�nes an overdetermined set of linear equations in transi and Zi that can be solved
for c and d. Solving this linear set of equations is equivalent to �tting a plane to a set of parallel lines in the 3D
Euclidean space, each having orientation �.

As a �nal step, we recompute the o�sets of an optimized symmetry axis on each slice, having orientation � and
�nal trans(i) = c �Zi + d. This is equivalent to intersecting the bilateral estimated symmetry plane with each brain
slice to obtain a new set of 2D symmetry axes.

2.3. Results and Evaluation

The algorithm has been tested on both CT (enhanced and non-enhanced) and MR (T1,T2, enhanced and non-
enhanced) images. Figure 6 shows the �nal symmetry axis extracted on each input brain slice from Figure 1. Figures
7, 8 and 9 show the extracted symmetry axes under various conditions. Figure 10 shows the symmetry axes extracted
from a set of axial images with a roll angle of 15 degrees.

Figure 6. Final symmetry axes superimposed on a set of CT scan slices.

To measure the accuracy of the algorithm, we have a neuroradiologist hand draw the ideal mid line on each 2D
slice of several randomly chosen sets of images. The radiologist needs the whole set of images shown for reference
while he works on each slice. Figure 11 shows a plot of the angles of symmetry axes chosen by the expert against the



Figure 7. The symmetry axis extracted from a CT scan where obvious asymmetry is present due to a dilated frontal
sinus outside of the brain.

Figure 8. The symmetry axis is extracted and the image is rotated to correct the yaw angle error (-6.5 degree) in
the input data.

Figure 9. The symmetry axis extracted from a CT scan where obvious asymmetry is present due to a tumor.



Figure 10. The symmetry axes extracted from a set of axial slices with 15 degree roll angles.

ones computed by our algorithm. Notice that our algorithm provides more accurate values in the lower brain slices,
because those slices present more complex bilateral bony structures, in contrast to the slices higher in the brain,
which become ovals or even near-circular at the tip of the head. On the contrary, the human expert felt less certain
on the lower slices since they lack midline markers as the higher slices do. Although theory tells us the yaw angle
of the symmetry axes on each axial slice should be the same, there is a measurement variation in the yaw angles
determined by the human expert. The standard deviations on di�erent sets of slices vary from 0.6 to 1.8 degrees.
In all cases, the di�erence between the mean value of the human picked yaw angles and the algorithm detected yaw
angle is less than one degree. For this kind of accuracy, the initial rotational errors in the images can be as large as
near 90 degrees.

Figure 11. The angles of the symmetry axes chosen by a neuroradiologist (curve with dots) versus the angles,
�i = arg max(C maxi(�j)), computed by our algorithm. This is dataset (3) of Table 1. The algorithm determined
angle is 2 degrees, the mean of the expert chosen angle is 1.9 degrees with standard deviation 0.7 degrees.

To evaluate the accuracy of computed roll and yaw angles, a densely sampled MR image set was resampled using
trilinear interpolation to arti�cially vary the yaw angles from -10 to 10 degrees in 2.5 degree intervals, and the roll
angles from -15 to 15 degrees in 5 degrees intervals. Figure 12 shows a set of coronal slices with varying roll angles
(Figure 12).

The average accuracy of the algorithm on both yaw and roll angle detection is under one degree (< 0:3 degrees
for the yaw angles and < 0:75 degrees for the roll angles), after taking into account the nonzero yaw angle of 1:25
degrees and roll angle of �1:75 in the original dataset (Figure 13, Figure 14). Given the sample interval for �nding
the symmetry axis on each slice is one degree, this result is excellent.

Given a volumetric brain scan, our algorithm can identify the errors in yaw and roll angles in the input data,
and correct these errors by recutting the input volume. The �nal result is an automatically extracted \midsagittal"



Figure 12. One slice sample from the coronal input with varied roll angles.
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Figure 13. Actual vs detected yaw angles in the MR original axial scans. The solid line is the perfect detection
result and the dashed line is formed from the detected yaw angle values using our algorithm.
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Figure 14. Actual vs detected roll angles in the MR resliced coronal scans. The solid line is the perfect detection
result and the dashed line is formed from the detected roll angle values using our algorithm.



image representing densities occurring on the bilateral symmetry plane (Figure 15).

Figure 15. The mid-sagittal plane automatically extracted from the MR data set (Table 1, data set (4)). The
detected yaw is 1.25 degrees and the detected roll angle is -1.75 degrees.

We have observed that our symmetry axes computation is not adversely a�ected by lesions and mass e�ects in the
images. The bony skull is in
uential, but the accuracy of the detected symmetry axes decreases when the symmetry
axes are determined by the silhouette of an axial or coronal brain slice alone. The internal structure of the brain
thus appears to enhance the position and orientation accuracy.

In the higher brain slices, a thin membrane that separates the two hemispheres of the brain is visible as a thin (1-3
pixel wide) linear feature in the image. In the ideal case, this membrane should line up exactly with the centerline
computed using symmetry detection (compare Figures 1 and 6). However, in real examples, the membrane may
appear to be displaced from the computed centerline, due to 1) inaccuracies in the computed centerline, and 2)
physical displacement of the membrane due to the mass e�ect caused by tumors or bleeds in the brain. Extracting
the actual position of this membrane from image data can be used in the former case to re�ne the computed centerline
estimate, and in the latter case to provide a quantitative measure of mass e�ect.

3. DISCUSSION AND CONCLUSIONS

When a set of axial slices has a large roll angle error, the actual medial line of the brain is shifted o� from the
symmetry axis of the whole image. We have applied the symmetry axis extraction algorithm to sets of reinterpolated
coronal slices in these situations, to estimate the roll angles and achieved accurate results as shown in Section 2.3.

The general contribution of this work is a simple idea: if a set of objects (human brains) are known to be ap-
proximately symmetrical, we can use the symmetry's invariance (midsagittal plane) as a computational guidance
for segmentation, inter-subject registration, and screening. We have carried out this idea in neuroradiological image
understanding by developing an e�ective mid-sagittal plane extraction algorithm that works using clinical, multi-
modality, cluttered, sparse, partial, normal and pathological brain image data; and various applications derived from
its results, including: automatic lesion detection, mass e�ect quanti�cation, and brain/atlas alignment.5,6 The
robustness and simplicity in this approach resides in the fact that the image understanding process is not limited to
information provided by low-level image data alone, but is guided by the intended symmetry as well.

This work successfully combines 2D and 3D images in such a way that 2D data is used to predict a 3D plane
(roll angles) and the 3D image is used to correct local errors in the 2D slices. The estimated head rotation angles
are within one degree of rotational accuracy as compared with human experts (neuroradiologists).

In summary, our work deals with pathological clinical 3D images, which can exhibit severe asymmetries. Our
approach not only identi�es symmetry axes where they exist (in normal brains), but where they are supposed to exist



(in pathological brains). Our work presents a sound geometric method for estimating the symmetry of a 3D object
using a sparse set of 2D slices. Little work has been reported on e�ective approaches dealing with sparsely-sampled
sets of clinical images and/or pathological cases, both of which are of great importance in applied medical image
analysis. Finally, we have extensively tested the algorithm, and have evaluated its relative accuracy with respect to
\ground truth" data from a human expert.

Our current work includes further evaluation of inter-subject gross registration results in terms of those parameters
other than the yaw, roll angles and translation along theX axis, determination of the anatomical location of a detected
lesion, comparisons of di�erent brain lesions in 3D and e�ective indexing of a 3D brain image for retrieval.
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