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ABSTRACT 
With the increasing level of automation in assem- 

bly planning and assembly execution, it becomes more 
obvious that there is a gap between the output of Q 

mechanical designer and an assembly planner. The 
question is: How t o  describe a designed assembly to  an 
assembly planning system? The input to almost all the 
current reported automatic assembly planning systems 
is one-static-state of the final assembly configuration 
regardless the assembly is meant to  be rigid or artic- 
ulated. The  inability to  represent the assembly design 
completely, accurately and computationally has hin- 
dered the power of an assembly planner in dealing with 
articulated assemblies as simple as taking something 
out of a drawer. In  this paper we identify a compu- 
tational representation (specification) of an assembly. 
The  basic idea of this representation is to use each ori- 
ented surface on a solid as a descriptive primitive and 
the symmetry group of the surface as a computational 
primitive. The  relative motions (degree of freedom) 
under various contacts between a part or a subassem- 
bly and the rest of the assembly can be efficiently de- 
termined by computing these basic symmetry groups in  
a proved correct manner. The  results reported in  this 
paper lay out a more realistic and precise group theo- 
retic framework than our previous work, and provide 
a concise, complete and computational representation 
f o r  rigid and articulated assembly. 

1 Introduction 
With the increasing level of automation in assem- 

bly planning and assembly execution, it becomes more 
obvious that there is a gap between the output of a 
mechanical designer and an assembly planner. The 
question is: How to describe a designed assembly to 
an assembly planning system? The input to almost 
all the current reported automatic assembly planning 
systems [14, 15, 9, 21 is one-static-state of the final as- 
sembly configuration regardless the assembly is meant 
to be rigid or articulated. The inability to represent 
the assembly design completely, accurately and com- 
putationally has hindered the power of an assembly 
planner in dealing with articulated assemblies as sim- 
ple as taking something out of a drawer. By a compu- 
tational representation of an assembly we mean that 

the representation of the assembly can be directly used 
to compute: 

1. relative positions of its parts in the final assembly 

2. the type and range of motion of any subset of 

3. separation of subassemblies 

4. compliant motion for (dis)assembly process 

configuration 

parts in the assembly 

In this paper we identify a computational represen- 
tation (specification) of an assembly that is composed 
of rigid solids'. The basic idea of this representation is 
to use each orzented surface on a solid as a descriptive 
primitive and the symmetry group of the surface as 
a computational primitive. The relative motions and 
the degrees of freedom under various contacts between 
a part or a subassembly and the rest of the assembly 
can be efficiently determined by computing these basic 
symmetry groups in a provably correct manner. Dif- 
ferent from the study of solids in local contact such 
as [3, 101, our aim is to have a complete and precise 
description of the intended, possibly articulated, final 
assembly configuration where each part usually has 
multiple contacts with the rest of the assembly; and 
our approach is algebraic in nature. Different from 
our previous work [6] where the surfaces of a solid 
are treated as set points without taking orientations 
into consideration, in this work oriented surfaces are 
used as the basic building blocks. Also different from 
[ll, 12, 131 in that a group theoretical formalism is 
embedded in a concise representation of an assembly 
such that no extensive algebraic equation manipula- 
tion is involved. 

In Section 2 we establish the basic vocabulary - 
oriented surfaces and their symmetry groups - for 
describing assembly, and the relationship of a pair of 
oriented surfaces. Then in Section 3 we introduce com- 
pound feature as a result of considering multiple con- 
tacting surfaces between solids, and present results on 

'A three dimensional continuum for which the  distance be- 
tween any pair of its points remains unchanged under any phys- 
ically possible motion 
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computing the symmetry group of a set of oriented 
surfaces. In Section 4, examples are shown to illus- 
trate the effectiveness of the approach. In Section 5 
we summarize current results and discuss future work. 
All proofs of the results reported in this paper can be 
found in [8]. 

riented Primitive Feature 

(b) the cylindrical hole SI and the cylinder S2, though 
they have the same radius, are not interchangeable if 
one takes their orientations into consideration. 

and Its Symmetry Group 
Since contacts among solids happen via the con- 

tacts of the surfaces of the solids, the representation 
and characterization of each contacting surface con- 
stitutes the foundation of any formalization for solid 
contacts. A group theoretic formalization of surface 
contact [6] treats each surface of a solid as possibly 
infinite) a subset S in Euclidean space, whic 6 can be 
expressed as a polynomial. A symmetry of S is defined 
as : 

Definition 2.0.1 A n  isometry (a distance preserving 
mapping) g is a symmetry of a set S c g3 if and 
only if g(S)  = S. 

A single surface, treated as a set of points or with 
orientation vectors pointing inward, has the same sym- 
metries as the surface with orientation vectors point- 
ing outward2. However, in real world problems it is 
rare that only one surface is considered in isolation. 
In an assembly, it is often the case that multiple sur- 
faces of one solid are in contact with multiple surfaces 
of other solids, this is a situation where a surface is 
treated as a set can run into problems: Figure 1 

A air 

Figure 1: Two adjacent planes, SI , 5'2, on a cube 

shows two adjacent (infinite) planar surfaces SI, 5'2 
of a block. If the two surfaces are treated as sets 
the symmetries of the two planes include a 90' ro- 
tation about the line of the intersection of the two 
planes which is not a symmetry in reality. If one takes 
into consideration the fact that one side of the plane 
is the material of the solid and the other is the air, 
the only symmetries left are those 180' rotations that 
preserve both the bounding surfaces and their orienta- 
tions. Another example of such non-real symmetries is 
illustrated in Figure 2. If the two cylindrical surfaces 
S1,S:! are treated as sets (infinite cylinders) then one 
cannot distinguish the two cases (a) and (b). In case 

2Planar surface is an exception: when it is treated as a set 
there are flipping symmetries which do not exist for oriented 
planes. In practice, this can be easily handled by checking the 
signs given by a solid modeler. 

; ......................... 
;. ....____.._..__._.... .: 7j I nfl  sz - 

Figure 2: In both cases (a) and (b), SI and S2 are 
interchangable if they are treated as sets. 

Obtaining the accurate symmetry group of a set 
of contacting surfaces becomes crucial in applications 
where either an assembly planner needs to decide 
which assembly parts fit with each other [7, 41 based 
on whether they have compatible symmetry groups, or 
what are the relative motions between a subassembly 
and the rest of the assembly. 

The aforementioned problems call for a more pre- 
cise characterization of surface features of a solid, i.e. 
taking the orientations of a surface into considera- 
tion. This addition to a set-feature will require that 
the symmetries of a surface keep both the points on 
the surface and the orientations of the surface, respec- 
tively, setwise invariant. The group theoretical formal- 
ization, thus, needs to be re-evaluated given oriented 
surfaces as the descriptive primitives of a solid. 

2.1 Oriented Surface and Its symmetry 

We introduce the concept of oriented features by 
defining a set of outward-pointing normal vectors for 
each surface point of a solid. The polynomial used 
to express an algebraic surface implicitly, such as the 
ones provided by a geometric solid modeler, defines 
such normal vectors. Let S2 be the unit sphere at  the 
origin embedded in ?R3, each point of S2 corresponds 
to a unit vector in 3'. 

Group 

Definition 2.1.1 A solid M is a connected, rigid, 
three dimensional subset of Euclidean space X3. 

Definition 2.1.2 A n  oriented primitive feature 
F = (S ,p)  of a solid M is an oriented surface where 

I )  S c !R3 is a connected, irreducible3 and continu- 
ous algebraic surface which partially or completely 
coincides with one or more finite oriented faces of 
M ;  

2) p c S x S2 is a continuous relation. For each 
s E S i f s  is a non-singular point of surface S 
(p.78 [I]) then v E S2 is one of the two opposing 

3Here irreducibze implies that a primitive feature cannot be 
composed of any other more basic algebraic surfaces. 
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normals of the tangent plane a t  point s such that 
( s ,  v) E p; ifs is a singular point of S (e.g. a t  the 
apex of a cone) then, for all v, where v E S2 is  
the l imit  of the orientations of its neighborhood, 
(s,v) E P. 

3) For all s E M ,  (s, v) E p,  v points away f rom M .  

Intuitively speaking, a feature is composed of both 
“skin”, S, and “hair”, the set of normal vectors which 
correspond to  the points on S2 .  Each element of rela- 
tion p is a correspondence between a point on S and 
a vector on S2.  Note, there may be more than one 
‘normal vector’ at one point of a surface, e.g. at the 
apex of a conic shaped surface. 

Let It be the proper Euclidean group which con- 
tains all the rotations and translations in %’, T’ be 
the maximum translation subgroup of I t ,  and SO(3)  
all the rotations about the origin. We now define how 
an isometry acts on the relation p defined in Definition 
2.1.2: 

Definition 2.1.3 A n y  isometry g = t r  of E t , t  E 
T’, T E SO(3) acts on p in  such a way that (s, U) E 
P (gs ,  rv) E g * P. 

Now we define the symmetries for an oriented sur- 
face: 

Definition 2.1.4 A proper isometry g E It is a 
proper symmetry of an oriented surface (prim- 
itive feature) F = (S ,p)  if and only i f g ( S )  = S and 
g * P = P .  

Note, the difference between the symmetries of a set 
efinition 2.0.1) and this definition. There is an extra 6” emand on a symmetry for an oriented surface - it 

has to preserve the orientations of the surface as well. 
Since orientations are points on S 2 ,  symmetries of an 
oriented feature have to keep two sets of points in S3 
setwise invariant. One can prove that the symmetries 
for an oriented surface form a group: 

Proposition 2.1.5 The symmetries of an oriented 
feature F = (S,p) f o rm a subgroup of&+, called the 
symmetry group of feature F. 

3 Multiple Contacts: Compound Fea- 
tures and their Symmetry Groups 

An assembly is a manifestation of surface interac- 
tions of its subparts, albeit the physical property of 
each individual part (rigid or deformable) or the na- 
ture of the contact (static or articulated). Thus the 
representation of an assembly is reduced to how to 
specify a set of contact constraints which dictate the 
configuration of a set of solids. The key contribution 
of the group theoretical formalization is the transfor- 
mation from a set of descriptive contact constraints 
to a set of computational constraints, i.e. the sym- 
metry groups of multiple contacting surfaces. Our 

work has been carrying through the formalization, al- 
gorithm development and implementation stages. In 
this section we focus on setting up the framework for 
computing the symmetry group of multiple contacting 
surfaces. 

From [4, 61 we have developed an expression for the 
relative motions of two solids B1 and B2 in contact 
via surfaces F1 and F2 respectively: 

where l F 1 1 2  is the relative position of solid 2 w.r.t. 
solid 1, GI,  G2 are symmetry groups of F1 and F2 re- 
spectively, 11,12 specify the locations of solids B1, B2 
in the world coordinate system and f1 and f2  specify 
the locations of F1, F 2  in their respective body coor- 
dinates. When two solids under n surface contacts, 
their contacting surfaces are coincide, thus the corre- 
sponding symmetry groups of the contacting surfaces 
are the same GI = G2 = G, the relative positions: 

This expression has shown clearly that the possible 
motions of a solid or a subassembly S in an assembly 
can be described precisely by the symmetry group G 
of the multiple contacting oriented surfaces of S. If G 
is an identity group, i.e. l T 1 1 2  = f1 fF1 gives a fixed 
position for S .  If G is a finite rotation group, then 
f1G fF1 contains a finite number of transformations 
reflecting the existence of multiple equivalent positions 
of subassembly S in the assembly. If G is a continu- 
ous group of dimension n then there exists relative 
continuous motions with d.0.f. n between S and the 
rest of the assembly. This is why explicitly expressing 
and effectively computing the symmetry group G of 
N surfaces are at the heart of the group theoretical 
formalization for solid contacts. 

For more general cases: 

1. Two solids have n general contact, the relative 
position of solid 2 with respect to  solid 1: 

l l l l z  E f1iG11~1G21.f~1 n fizGizgzGz2f&l n ... 

n finGinanGanfF: (3) 
where G,j is the symmetry group of primitive fea- 
ture j of Si and fij is its feature coordinates. 

2. m solids have a chaining general contact, the rel- 
ative location of solid m with respect to  solid 1: 

lT1lm E f i G 1 2 u 1 G ~ 1 f ~ ~ f ~ G 2 3 a ~ G 3 2 f ~ ~  ... 
fm-1 G(m-1)mOm-l Gm(m- l)fm(m- -1 1) (4) 

where Gij is the symmetry group of the surface 
on solid i in contact with solid j .  

Let us first give a denotation for such a set of con- 
tacting surfaces, and then determine what the sym- 
metry group of this collection of surfaces should be. 
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Definition 3.0.1 A compound feature F = (S,p) 
of primitive features F1 = (5'1, p l ) ,  ..., F, = (S,,p,), 
is  defined to be . s= s1 u...us, . p = p 1 u  ... u p ,  

The advantage of using a relation p to denote the 
orientations of a feature Definition 2.1.2) becomes 
more obvious for comDoun d features. When two Drim- 
itive features are coAbined, there often 
normal directions at  the points where 
meet (Figure 3). 

are miltiple 
the surfaces 

orientation vectors 

Figure 3: A pair of distinct features F1, F2 

F1 = ( 'I,R) F2 = ( S z * Y Z )  

Figure 4: Two conic features F1, F2 which are 1- 
congruent to each other 

3.1 Pairwise Relationship of Oriented 

In order to determine the symmetry group of a com- 
pound feature systematically, we start with the sim- 
plest compound feature - a compound feature com- 
posed of only one pair of primitive features. See Fig- 
ures 3, 4 and 5 for examples of these simple compound 
features ( Note that only a finite face on each primitive 
feature is drawn). 

Given a pair of primitive features, what kind of re- 
lationship holds between the two features and what is 

Features 

orientation vettors of Pt , P2 

Figure 5:  Two cylindrical features FI, F2 which are 
2-congruent to each other 

@ orientation vectors of 

orientation vectors of j', 

Figure 6: Two complementary features F1, F2 

the effect of such a relationship in terms of determin- 
ing their symmetry group? The following definition 
gives a characterization of four relationships between 
a pair of primitive features: 

Definition 3.1.2 Two orieszted primitive features 
F1 = (Sl,p~),Fz = (Sz,pz) are said to be 

Distinct: if for any open subsets Sl, c SI, Si c 
Sz, no g = t r  E E+ exists such that g(S/,) c Sz 
or g(S4) c SI. See Figure 3 for an example of a 
pair of distinct features F l ,  F2. 

1-congruent: if there exists at  least one g E 
E+ such that g(S1) = SZ and g * p1 = p2, but 
for all such g,g(Sz) # SI.  For an example see 
Figure 4. Another example is two parallel planar 
surfaces with normal vectors pointing in the same 
direction. 

2-congruent: if there exists gc E E+ such that 

gc * pz = PI. For an example, consider two par- 
allel cylindrical surfaces having the same radius 
and normal vectors pointing away from their cen- 
ter lines, as in Figure 5 .  Also, two parallel planar 
surfaces with normal vectors pointing to the op- 
posite directions serve as examples of a pair of 
2-congruent features. 

Complementary: if there exists g E I +  such 
that g(S1) = Sz and g * p1 = -p2 where -p2 = 
{ ( s , - v ) ~ ( s , v )  E p ~ } ;  in other words, V(s ,w)  E 

sc(S1) = S2,gc(S2) = s1,gc * p1 = p2 and 
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g * p1,3(s, -U) € P 2 ,  and U) E P2,3(S, -U) E 
g * p 1 .  See Figure 6 for an example. 

It is easy to verify that these relationships are sym- 
metrical and exhaustive. 

Proposition 3.1.3 Distinct, 1-congruent , 
2-congruent and complementary are the only possible 
relationships between a pair of primitive features. 

Corollary 3.1.4 Except for a pair of planar surface 
primitive features, distinct, 1-congruent, 2-congruent 
and complementary relationships are mutually exclu- 
sive relations between a pair of primitive features. 

The definition for oriented features allows us to dis- 
tinguish a feature from its complement which we can- 
not do for features treated only as sets. In general the 
relationship between two primitive features can be ei- 
ther distinct, 1-congruent, 2-congruent or complemen- 
tary, except for a pair of planar surfaces of solids which 
are always complementary of each other and at the 
same time can be either 1-congruent or 2-congruent. 

When two solids have a surface contact, it is the 
case that two features which are complementary of 
each other are brought into coincidence. The following 
proposition states how the symmetry groups of a pair 
of complementary features are related to each other. 

Proposition 3.1.5 I f  features F1 = ( & , P I ) ,  F2 = 
(5’2, p 2 )  are complementary of each other, where 
.(SI) = & , a  E E+, and G1,Gz are the symmetry 
groups of F I ,  F2 respectively, then aG1a-l = G2. In 
particular, if S1 = S2 then 6 1  = G2 (the necessary 
condition for surface contact). 

3.2 Symmetry Group of Multiple Ori- 

In the next few propositions we shall explore how 
the symmetry group of a compound feature is ex- 
pressed by the symmetry groups of its component 
primitive features. 

ented Surfaces 

Proposition 3.2.6 Given a compound feature F = 
S p) of primitive features Fl = (SI, p l ) ,  ..., F, = Isk ,Pn)  where F1, ..., F, are pairwise distinct primi- 

tive features with symmetry  groups G I ,  ... G, respec- 
tively. Then  the symmetry  group G of F is G = 
GI n ... n G,. 

Proposition 3.2.7 Let a compound feature F = 
S, p) be composed of a pair of primitive features F1 = 
S1,pl) and F2 = (S2,pz) which are I-congruent 

each other. If G1,Gz are the symmetry groups 
F1, F2 respectively, and G is the symmetry group 
F then G = GI c7 G2. 

Proposition 3.2.8 Let a compound feature F 
(S,p) be composed of a pair of primitive features 
and Fz which are %congruent of each other via 

f le f ini t ion 3.1.2). Z f  = (S l ,p l ) , ,F2  = (S2,p2) 
ave symmetry groups G1,Gz respectavely, and G as 

the symmetry group of F then G =< gc > (GI  n G2) 
where < gc > denotes the subgroup of E+ generated by 
s c  . 

In general, the symmetry group G of a compound 
feature F can be found from the intersection of the 
symmetry groups Gi of its primitive features. When 
2-congruent features exist, where the mappings which 
flips 2-congruent features in F may also contribute to 
6.  These are the new symmetries that do not exist in 
any individual Gi but only when all the Fis are con- 
sidered collectively, and the new group they generated 
is a discrete group. 

With this proposition we end this section where 
propositions are proved for the symmetry groups of all 
the possible pairs of the oriented primitive features. 

4 Applications 
As one can observe from the proved results for 

surface contact, the intersection of symmetry groups 
of the primitive features is one of the crucial opera- 
tions in determining the relative motions of contacting 
solids. We face two computational problems: 

1. How to denote symmetry groups, which can be 
finite, infinite, discrete or continuous, on comput- 
ers? 

2. How to intersect subgroups of E+ on computers 
efficiently? 

We have successfully implemented an efficient 
group intersection algorithm using geometric invari- 
ants denotation of the groups [5]. The basic symme- 
try group of each surface of a solid is obtained by a 
straightforward mapping from the boundary (surface) 
file of the solid to their respective canonical symmetry 
groups. 

Figure 7: A five-part Gearbox 

As an example of assembly specification using sym- 
metry groups, see Figures 7 and 8 for a five-part gear- 
box. The representation of the assembly is shown in 
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Figure 8: The top view of the gearbox when it is as- 
sembled. 

Figure 9,  where Li , i  = 1..4 is the symmetry group 
of the contacting compound feature between solids 
Si and Ss. Li = ~ i S Q ( 2 ) a ~ ~ , i  = 1..4, SQ(2) is a 
one degree rotation group resulted from the intersec- 
tion of the symmetry group of a plane with that of 
a cylinder (the compound feature composed of two 
surfaces of the shaft of a gear). Lij = L i L .  I = 
aijS0(2)bijSO(%)cij ,  i, j = 1..4 indicate the relative 
positions between gears (non-surface contact) are sim- 
ply determined by some translations aij , bi ', ci . 7  where 
the relative gear pitch ratio is also embedded, and a 
rotation in SO(2). This representation of the gearbox 
(Figure 9) specifies precisely the articulated gearbox 
assembly. 

Figure 10 from 1141 shows a nonlinearizable assem- 
bly. Using our representation, one can immediately 
determine it is a nonlinearizable assembly by comput- 
ing the symmetry group of the contacting surfaces for 
each individual part under any possible motion. The 
result is an identity group, meaning no existing rel- 
ative motions between the part and the rest of the 
assembly that can separate the part. A disassem- 
blable subassembly can be identified by computing the 
symmetry group of a compound feature composed of 
contacting surfaces from 2 OE 3 parts under a disas- 
sembly motion, If the resulting group remains as an 
identity group then the subassembly is not movable. 
In this example, the resulting group of contacting sur- 
faces for a two-part subassembly, such as S1 U S2, is 
a TI group indicating a one dimensional translation 
which can separate the assembly. 

5 Summargran 
In this paper we have carefully examined the repre- 

sentation and computation aspects for rigid and artic- 
ulated assembly. Special attention is given to the com- 
putational characterization of the symmetry group of 
multiple contacting surfaces. Here are some questions 

s5 

Figure 9: Representation of the gearbox assembly 
in terms of contacting compound feature symmetry 
groups, where Li = ~ i S 0 ( 2 ) a ~ ~ , i  = 1..4 and Lij = 
LiLj = ~ i j S O ( 2 ) ~ G ~ , i , j  = 1..4 

Figure 10: A four-part nonlinearizable assembly from 
1131. 

we seek the answers for: 

Given two solids SI, S2, what is the relative loca- 
tion of the two under n surface contact (n  primi- 
tive features from each side, Figure l l ) ?  

Figure 11: Solids S1 and S2 have n contacts 

Given two solids S1,Sa, what is the relative loca- 
tion of the two under n general contact? 

Given m solids in a chaining general contact (Fig- 
ure 12), what is the relative location of the mth 
solid with respect to the first solid? 

The hypothesis is that using a group theoretical 
formalization of the oriented surfaces of solids in con- 
tact, these questions can be answered automatically 
and precisely. What we have achieved so far includes 
a thorough understanding of surface contact among 
solids, an algorithm to compute the symmetry groups 
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Figure 12: Solids SI, S2, ... S, form a chain 

in case (1) above which has been implemented and 
used in an assembly planner; for cues  (2) and (3),  we 
are able to construct the precise expressions for rela- 
tive positions in terms of contacting surface symmetry 
groups (equations (3), (4)). 

Though the results are promising, many open prob- 
lems remain. Further work is needed for a compu- 
tational treatment of group products as what have 
been implemented for group intersections in [4, 51. 
The specification of the non-full-range motions exist- 
ing in an assembly (The first example given in Sec- 
tion 4 contains full range of the rotational motion) is 
one topic under our current investigation. It is also 
useful to further study those compound features with 
more complicated inner structures. For example, one 
may define a concept of n-congruence on n features 
Fl . . . Fn as requiring that there exists g E &t such 
that g ( F i )  = F(i mod n ) t l .  Such congruences will give 
rise to new symmetries of the compound feature. How- 
ever Proposition 3.2.8 is not trivially generalized to 
such a proposition: 

Proposition 5.0.9 Given a compound feature F = 
I " ' P )  of  primitive features Fl = ( S ~ , p l ) ,  ..., Fn = 
S,, pn) with symmetry groups GI ,  ... Gn respectively, 

the symmetry group G of F is 

G =< { g i j }  > (GI n ... n Gn) 

where { g i j }  is a set of isometries g i j  E &+, each of 
which is associated with a pair of 2-congruent prim- 
itive features Fi, Fj in  F such that Fi,  Fj are 2- 
congruent via gi j ;  < {g i j }  > denotes the group gener- 
ated by all such gi js .  

In summary, our new results on oriented surfaces 
has laid out a realistic and precise group theoretic 
framework for characterizing surfaces of solids and 
capture the very nature of surface contact - the state 
of being complementary. Under this formalization sur- 
face contact can be treated conceptually effectively 
and computationally efficiently. In this paper we have 
generalized this framework and applied it to provide 
a concise, complete and computational representation 
for rigid and articulated assembly. Though the ap- 
proach is theoretical, the results are easily implemeted 
for various applications involving solids in contact, 
provided the input solid can be expressed in terms of 
its algebraic surfaces (a boundary file) as many cur- 
rent solid modeling systems are able to do. 
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