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ABSTRACT

In this paper we study classification of 2D repeated patterns in terms of their respective symmetry

groups — the well-known seven Frieze groups and 17 wallpaper groups. Computer algorithms for

Frieze and wallpaper symmetry group classification are developed in Euclidean as well as affine

spaces. Several symmetry invariants of these groups under affine transformations are analyzed

in detail and used to extend the Euclidean group classification algorithm for patterns that are

distorted under affine transformations. Experimental results on computer generated images and

photos of natural scenes are presented. Precise classification of 2D repeated patterns in terms

of their symmetry groups provides a computational means for image indexing, image matching,

object recognition, and motion recovery.

This is a report of an on-going research effort. Existing prbolems and future work are dis-

cussed.



1 Motivation

Any subsetS of the Euclidean spaceRn is associated with asymmetry group — all the rigid

transformations that keepS setwise invariant [2, 9, 21]. A symmetry group is thus one of the

important descriptors of any geometric entity. In particular, the symmetry group of a repeated

pattern in a plane belongs to a finite possible set. These are the sevenFrieze groups[14, 29] for

2D patterns repeated along one dimension, and the seventeenwallpaper groups[26] for patterns

extended by two linearly independent translational generators. These groups are also called one

and two dimensional Crystallographic groups [12].

Frieze and wallpaper groups were discovered and studied more than one hundred years ago:

In 1831 Hessel first classified the 32 three-dimensional point groups (finite subgroups of the or-

thogonal group O(3)) which correspond to the three-dimensional crystal classes [13]. All of the

symmetrical networks of points which can have crystallographic symmetry were found geomet-

rically by Frankenheim in 1835 [8]. In the late 19th century Fedorov, Schoenflies, and Barlow

classified the 17 wallpaper groups (two-dimensional crystallographic groups) and the 320 three-

dimensional crystallographic groups [5, 7, 6, 27, 1]. Dutch artist Escher (1898-1972) used these

groups in creating his intriguing interlocking repeated patterns. Yet we have not seen existing com-

putational algorithms to classify these groups automatically for given repeated 2D patterns, nor are

we aware of any existing applications of these groups in computer vision.

Using wallpaper groups as a basic scheme for indexing repeated 2D image patterns is especially

meaningful since there is only a finite number of such groups regardless of the infinite possible

varieties of different 2D repeated patterns. If one can determine the symmetry group of a given

2D repeated pattern then one can quickly sort out a large number of images into a finite number

of buckets, 7 Frieze groups or 17 wallpaper groups. Further treatment of image patterns can be

guided by their symmetry groups, for example, only those patterns who have the same symmetry

groups can possibly match each other — a necessary condition. Furthermore, the symmetry group

of a pattern is an effective descriptor because it is independent of the size, absolute color, lighting

and density of the pattern.

In this paper, we report our effort on developing an algorithm to identify the symmetry group

of a given 2D repeated pattern under Euclidean, affine transformations. The problem we are trying

to solve in this paper is not to detect a repeated pattern from a complicated scene as some authors

have done [18, 24]. Instead, given a repeated 2D pattern in a plane our goal is to classify which

one of the seven Frieze groups or 17 wallpaper groups the pattern belongs to. The outcome of

our work is a mathematical classification (in terms of symmetry groups) of repeated patterns into

finitely countable classes.
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Our approach is intensity based, it is not limited to recognizing the exact patterns in the picture

(pattern contours), but captures instead the underlying grid structure of a pattern. Taking advantage

of how exactly these symmetry groups behave under various transformations, our algorithm looks

for a selected set of possible invariant symmetries. By verifying their existence in a logical manner,

it is possible to determine the symmetry group (from a distorted pattern) of a pattern before its

deformation.

Section 2 briefly describes some related work. In Section 3 the structures of Frieze and wallpa-

per groups are given respectively. A simple wallpaper group classification algorithm in Euclidean

space is also described. Section 4 studies wallpaper groups under non-rigid transformations. Using

several invariant symmetry subgroups, an algorithm for wallpaper group classification under affine

distortions is presented. Experiment results are shown in Section 5. Section 6 concludes the paper.

2 Related Work

Humans have an acute ability for symmetry perception. While the automation of such powerful

insights is less than obvious, many researchers have made an effort on developing symmetry detec-

tion algorithms to find symmetry axis in Euclidean space or to find skewed symmetry axes under

affine or perspective skewing.

The termskewed symmetrywas first coined in [16], meaning planar shape mirror symmetry

(bilateral symmetry) viewed obliquely. Analysis of skewed symmetry, has attracted several re-

searchers [10, 22, 31, 30], where the goal is to automatically determine the axis of the skewed

symmetry.

Work has also been done on finding repeated patterns in real images [18, 24, 25, 19]. Leung

and Malik examine overlapping windows in the original image to find ones with the right ratio

of image ‘energy’ according to the second moment of the window. The two eigenvalues of the

second moment matrix tell whether the pattern repeats in one or two directions. Selected windows

are matched with neighboring patches, and the output of their algorithm is a list of basic elements

in the repeated pattern, neighboring patches that match well with these elements, and the affine

transformation relating them. More recently, Schaffalitzky and Zisserman [24, 25] describe a

procedure to find repeated patterns in a real image. Their method uses image features such as

edges, corners or closed contours to find repeating elements. Then a graph among the elements

is constructed and enriched by a set of optimized affine transformation parameters. The output

is a grouping of the repeating elements (by translations) in a real image. Although each of these

‘repeated pattern’ finders has its limits and no quantitative evaluations are given, the results on real

images are impressive.
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In summary, there are two typical approaches to detecting repetition of a 2D pattern. The first

is to extract a sparse set of features and to hypothesize links (translations) between them based on

visual similarity or conformance to a particular parametric model. This approach is exemplified

by [18] and [24]. The benefits of this method are the ability to detect small regions of repeating

pattern within a larger image, and the ability to group pattern elements despite local surface defor-

mations (such as the folds of a shirt). The drawback is the need for a pattern with distinct corner

features. The more traditional image processing approach to detecting pattern repetition is to use

autocorrelation [19] or the Fourier transform [23]. These approaches work for any intensity image

(not just ones with strong corners). The drawback is the assumption that a single repeated pattern

occupies a large portion of the image. Thus this approach is more relevant to analyzing patterns

that have already been segmented in some other way.

Our approach attempts to draw on the strengths of both methods. Specifically, a sparse set of

“interesting” image patches is extracted. Figure 2b shows patches extracted for the rug in Figure 1a.

Each interesting intensity patch is correlated over a local neighborhood (in these examples the

neighborhood is the whole image), to yield a correlation score for each pixel displacement from

the original feature position. This is repeated for all of the extracted intensity patches, and the

correlation images are accumulated into a single correlation score vs. displacement image. The

accumulated score image for Figure 1a is shown in Figure 2c. Our goal is to precisely classify the

repeated pattern in terms of its wallpaper symmetry group.

(a) (b) (c)

Figure 1:Examples of imperfect, real-world patterns.
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(A) (B) (C)

Figure 2:A) Rug image. B) Extracted “interesting” feature patches. (C) Accumulated correlation score vs

pixel displacement image.

3 Frieze and Wallpaper Groups Classification

Any repeated pattern on a 2D plane has an associated non-trivial symmetry group, which has to

be one of the seven Frieze groups or the 17 wallpaper groups [26]. Interested readers can find a

comprehensive introduction on 2D patterns and their symmetry groups in [11]. A simple proof

for the existence of 17 wallpaper groups can also be found in [28]. Our goal is to find the right

symmetry group given a 2D pattern repeating along one or two linearly independent directions.

Mathematically speaking, the Frieze and wallpaper groups are defined for 2D repeated patterns

that cover the whole 2D plane. In practice, we analyze a repeated pattern bounded in a finite area.

In this paper we discuss repeated patternsP of finite boundaries. We use the concept of symmetry

groupsG of P with the assumption thatG is the symmetry group of an infinite repeated pattern

for whichP is a finite patch. The central idea of the classification algorithms in the following text

carry the same spirit, that is to determine a global symmetry group using local cues.

3.1 Frieze Groups

Assuming a one dimensional repeated pattern (a Frieze pattern) is placed horizontally, there are

only seven possible patterns in terms of their symmetries (Figure 3). Each of the seven Frieze

groups contains the following isometries:
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Figure 3: The seven Frieze patterns which have distinct Frieze symmetry groups

� I: one dimensional translation only

� II: translation and nontrivial glide-reflection

� III: translation and vertical reflection

� IV: translation and 2-fold rotations

� V: translations, 2-fold rotations, vertical reflections, nontrivial glide-reflections

� VI: translations, horizontal reflections

� VII: translations, rotations, horizontal reflections and vertical reflections

See Table 1 for a list of different symmetries existing in each of the seven Frieze groups.

Figure 4 displays a simple algorithm to classify a given Frieze pattern into one of the seven

Frieze groups, where each rectangular box is a test for the existence of a particular kind of sym-

metry.
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Figure 4: The algorithm to find the seven Frieze groups
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Table 1: Recognition Chart for Frieze Patterns

Group translation 1800 Horizontal Vertical Nontrivial

Type rotation reflection reflection glide-reflection

I yes no no no no

II yes no no no yes

III yes no no yes no

IV yes yes no no no

V yes yes no yes yes

VI yes no yes no no

VII yes yes yes yes no

3.2 Wallpaper Groups

In wallpaper patterns, the two linearly independent translations of minimum length are the two

basic generators of each group, and they construct a lattice for the group. The smallest region

which can be translated by the two generators to cover the whole 2D space is called thegen-
erating region. Figure 5 shows a diagram from [26] which depicts precisely each generating

region of the 17 wallpaper groups, their translation generators, and the rotation, reflection and

glide-reflection symmetries. Hereglide-reflectionmeans symmetries that are composed of a trans-

lation along the reflection axis followed-by a reflection about the axis. There are five types of

lattices of the 17 wallpaper groups. They are: (1) parallelogram (two groups:p1; p2), (2) rectangu-

lar (five groups:pm; pg; pmm; pmg; pgg), (3) rhombic (two groups:cm; cmm), (4) square (three

groups:p4; p4m; p4g) and (5) hexagonal (five groups:p3; p3ml; p3lm; p6; p6m).

These five lattices are in general parallelograms. If the angles between the edges are90o then

the lattice is rectangular. When the two edges have the same length they become rhombic. Square

and hexagonal lattices are two special cases of rhombic when the angles between a pair of adjacent

edges are90o and60o respectively. Thus even if a lattice of a repeated wallpaper pattern is explicitly

given, there are still multiple sets of possibilities for its symmetry group. For example, a pattern

has a square lattice does not mean it has to have one of the symmetry groups under square lattices:

p4; p4m; p4g, its symmetry group could be, say,p2. In another word, having squared lattice is a

necessary but not a sufficient condition for the corresponding pattern to have a symmetry group

from p4; p4m or p4g.

Using a guide map such as the one shown in Figure 5, a human user can follow the symbols to

identify the existence of certain symmetries and then determine what is the symmetry group of a
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Figure 5: The generating regions for the 17 Wallpaper groups (from [26])
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given pattern. When patterns become complicated this is not always an easy task. Using computers

to recognize the symmetry of a given pattern also has its shares of problems. The first one is to

recognize the underlying lattice structure (see Section 5), and the second is to computationally

verify the existence of rotation and reflection symmetries.

Here we describe a symmetry group classification algorithm in Euclidean space. Assume the

lattice type is already computed (given by translation vectors T1, T2) by measuring the angles of

the corners and lengths of the edges of the lattices. We borrow the labelings for wallpaper groups

from [26] which are shown in Figure 5. An T1-reflection (T2-reflection) means a reflection about

an edge of the unit lattice parallel with T1 (T2).

Euclidean Algorithm :

1. If the lattice is a parallelogram lattice (two possible groups:p1; p2), test 2-fold rotation. If

the answer is yes G isp2 otherwise G isp1.

2. If the lattice is a rectangle lattice there are five plus two (seven) possible groups:pm; pg;

pmm; pmg; pgg andp1; p2. First test 2-fold rotation. If 2-fold rotation exists (four possible

groups: pmm; pmg; pgg; p2) test T1-reflection and T2-reflection. If neither is a glide-

reflection G ispmm, if one of them is a glide-reflection G ispmg, otherwise G ispgg. If

no reflection exists, then the G isp2. If 2-fold rotation does not exist (three possible groups:

pm; pg; p1), check T1-reflection (or T2-reflection). If it is a glide-reflection G ispg otherwise

G ispm. If no reflection symmetry then it isp1.

3. If the lattice is a rhombic lattice, test diagonal reflection symmetry. If it does not exist, go

to step 1. Otherwise there are two possible groups:cm; cmm, test 2-fold rotation. If the

symmetry exists G iscmm otherwisecm.

4. If the lattice is a square lattice, test 4-fold rotation symmetry. If 4-fold symmetry does not

exist, go to step 3. Otherwise there are three possible groups:p4; p4m; p4g, test T1-reflection

symmetry. If the symmetry exists G isp4m. Otherwise test diagonal-reflection, if the answer

is yes G isp4g otherwisep4.

5. If the lattice is a hexagonal, first test 3-fold rotation symmetry. If no 3-fold symmetry exists,

go to step 3. Otherwise there are five possible groups:p3; p3ml; p3lm; p6; p6m, test 2-fold

rotation. If 2-fold rotation exists (two possible groups:p6; p6m), test T1-reflection. If T1-

reflection exists G isp6m otherwise G isp6. If there is no 2-fold rotation (three possible

groups: p3; p3ml; p3lm), test T1-reflection. If the answer is no G isp3 otherwise check

diagonal-reflection. If the symmetry exists G isp3ml otherwise G isp3lm.
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In short, given a lattice first test the possible existence of special symmetries (3-fold, 4-fold

rotations, diagonal reflection); when the answer is yes, the search is limited in a small set of

possible groups; when the answer is no, the classification process proceeds to a more general type

of lattice.

4 Beyond Rigid Transformations

When a 2D pattern undergoes a rigid transformation, its symmetry group remains. Strictly speak-

ing, its symmetry group is conjugated by the transformation that acts on the pattern. Since there

exists a bijection between the original symmetry group and the conjugated symmetry group, the

two groups are considered equivalent (isomorphic). If one imagines a coordinate system fixed on

the pattern, when the pattern goes through rigid transformations its translation, rotation, reflection

and glide-reflection symmetries remain the same with respect to its local coordinates.

This situation will no longer be true when the pattern undergoes non-rigid transformation.

However, certain symmetries of a repeated pattern may survive some constrained non-rigid trans-

formations. In this section we explore these possible symmetry invariants under non-rigid trans-

formations. Our goal is to determine whether we can still classify the symmetry group of a trans-

formed pattern under similarity, affine and perspective distortions.

First of all, let us state precisely when two wallpaper groups are considered as equivalent.

Abiding the same standards as stated in [28], two wallpaper groupsG;G0 with latticesT; T 0 re-

spectively are equivalent if there is an isomorphismG ! G0 which maps the subgroupT onto

T 0.

4.1 Under Similarity Transformations

Given a 2D patternS with symmetry groupG and its transformed versionS0 = k(S) under

similarity transformationk, one can establish an isomorphism betweenG andG0 by sending the

identity inT to the identity inT 0, and every non-identity elementt 2 T to kt 2 T 0 wherek 2 R.

HereT; T 0 are lattices ofG andG0 respectively.

This proves that the symmetry groups of a repeated pattern and the symmetry group of its

enlarged or shrunken version are conjugations of each other. Thus the algorithm described in

Section 3 can be applied directly to patterns under similarity transformations.
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4.2 Under Affine Transformations

When a 2D repeated pattern undergoes an affine transformation, different lattices in general can-

not be distinguished from each other. This is because the five lattice structures can be transformed

into each other under general affine transformations. However, some symmetries can survive con-

strained or even general affine transformations. Here we prove the sufficient conditions for the

existence of two types of symmetry invariants. In Section 4.2.3 we explore what happens to a

reflection symmetry under skewing.

4.2.1 C2 symmetry subgroup is invariant under Affine Transformations

TheC2 symmetry subgroup is a group of two elements: the identity and 180 degree rotation. It

is pointed out without a formal proof in [10] that “If a planar figure isC2-symmetric, then this

symmetry is preserved under affine transformations ...”. Here we give a one-line proof for this

statement.

Let S be a 2D pattern which has aC2 subgroup such that there exists a non-trivial rotation

(180o rotation)g 2 C2; g(S) = S. Note,g =

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

is its own inverse, i.e.gg = gg�1 =

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

=

�
�
�
�
�
�

1 0

0 1

�
�
�
�
�
�

. Now letS0 = A(S) whereA =

�
�
�
�
�
�

a b

c d

�
�
�
�
�
�

is a general affine

transformation. We need to prove thatg(S0) = S0, i.e. C2 remains a symmetry subgroup ofS0.

Proof :

g(S0) = g(A(S)) = g(Ag�1g(S)) = (gAg�1)(g(S)) =

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

�
�
�
�
�
�

a b

c d

�
�
�
�
�
�

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

(g(S)) =

�
�
�
�
�
�

�a �b
�c �d

�
�
�
�
�
�

�
�
�
�
�
�

�1 0

0 �1

�
�
�
�
�
�

(g(S)) =

�
�
�
�
�
�

a b

c d

�
�
�
�
�
�

(g(S)) = A(g(S)) = A(S) = S0. 2

This proof tells us that 2-fold rotational symmetry of a pattern survives any non-singular affine

transformation of the pattern. Conversely, it is also true that if a patternS does not have a 2-fold

symmetry, any form of its affine transformations does not have a 2-fold symmetry either.

Proof: ifS becomes 2-fold rotational symmetrical after an affine transformationA, i.e. r(A(S)) =

A(S), thenr(A�1A(S)) = r(S) = S. ThusS has a 2-fold rotational symmetry, a contradiction.2
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4.2.2 Reflection Symmetries are invariant under Parallel and Perpendicular Scalings

Next we examine reflection symmetries. We are trying to prove the following: a reflection and

glide-reflection symmetry remainsif the pattern undergoes a non-uniform scaling parallel or per-

pendicular to its reflection axis.

Without loss of generality, letg be a reflection about an axis parallel to the X or Y axis,g =
�
�
�
�
�
�

�1 0

0 1

�
�
�
�
�
�

or g =

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

. g is a symmetry ofS, i.e. g(S) = S. Let K =

�
�
�
�
�
�

a 0

0 b

�
�
�
�
�
�

be a

non-uniform scaling along the X and Y axes, andS0 = K(S). Proveg(S0) = S0.

Proof :

g(S0) = g(K(S)) =

�
�
�
�
�
�

�1 0

0 1

�
�
�
�
�
�

�
�
�
�
�
�

a 0

0 b

�
�
�
�
�
�

(S) =

�
�
�
�
�
�

�a 0

0 b

�
�
�
�
�
�

(S) =

�
�
�
�
�
�

a 0

0 b

�
�
�
�
�
�

�
�
�
�
�
�

�1 0

0 1

�
�
�
�
�
�

(S) =

K(g(S)) = K(S) = S 0
2

A similar proof can be given forg =

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

.

4.2.3 Reflection Symmetries under Skewing

Here we show that for a reflection symmetryg of a repeated patternS to remain as a symmetry

after a non-trivial skew transformationA =

�
�
�
�
�
�

1 a

b 1

�
�
�
�
�
�

(wherea; b are not simultaneously zeros),

some specific constraints must be satisfied.

Proof :

Without loss of generality, let us assumeg is a reflection symmetry ofS, i.e. g(S) = S, and its

reflection axis is X axis,g =

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

. A is a skewing transformationA =

�
�
�
�
�
�

1 a

b 1

�
�
�
�
�
�

. In order for

A to be invertible,ab 6= 1, andA�1 =

�
�
�
�
�
�

1

1�ab
� a

1�ab

� b

1�ab

1

1�ab

�
�
�
�
�
�

.

Let us assumeg(A(S)) = A(S). Then we haveA�1gA(S) = S.
�
�
�
�
�
�

1

1�ab
� a

1�ab

� b

1�ab

1

1�ab

�
�
�
�
�
�

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

�
�
�
�
�
�

1 a

b 1

�
�
�
�
�
�

(S) = S

) 1

1�ab

�
�
�
�
�
�

1 �a
�b 1

�
�
�
�
�
�

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

�
�
�
�
�
�

1 a

b 1

�
�
�
�
�
�

(S) = S

) 1

1�ab

�
�
�
�
�
�

1 2a

�2b 1

�
�
�
�
�
�

(S) = S
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) 1

1�ab

�
�
�
�
�
�

1 �2a

�2b 1

�
�
�
�
�
�

�
�
�
�
�
�

1 0

0 �1

�
�
�
�
�
�

(S) = S

) 1

1�ab

�
�
�
�
�
�

1 �2a

�2b 1

�
�
�
�
�
�

(S) = S.

This result states that for a specific pair ofa; b 2 R1; a 6= 0; b 6= 0; ab 6= 1, a skewing
�
�
�
�
�
�

1 �2a

�2b 1

�
�
�
�
�
�

followed by a uniform scaling 1

1�ab
of S is a symmetry of the repeated patternS. In

general, a patternS can only be its non-trivially scaled version ifS is a pattern of uniform density,

thereforeS would not be a repeated pattern: a contradiction.

When one ofa; b is zero, sayb = 0, the above result means that the horizontal skewing
�
�
�
�
�
�

1 �2a

0 1

�
�
�
�
�
�

is a symmetry of the repeated patternS. This is to say that there exists a particular

numbera such that for all pointsx; y onS,

�
�
�
�
�
�

1 �2a

0 1

�
�
�
�
�
�

�
�
�
�
�
�

x

y

�
�
�
�
�
�

=

�
�
�
�
�
�

x� 2ay

y

�
�
�
�
�
�

. 2

This proof basically says that reflection symmetries do not survive a general affine skewing

A =

�
�
�
�
�
�

1 a

b 1

�
�
�
�
�
�

wherea 6= 0; b 6= 0; ab 6= 1. However, a reflection symmetry may remain when one

of a; b is zero, as far as the repeated patternS satisfies the condition that there is a correspondence

between point[x; y] and the point[x + ay; y] of S. If S is a pattern composed of stripes parallel

with and equal distanced from theX axis, then regardless of the value ofa, the reflection symmetry

will be preserved. However, in that caseS is no longer a repeated pattern. For a repeated pattern

S and a given skewingA, this reflection-preserving condition can be tested algorithmly.

4.3 Wallpaper Group Classification for Affine Distorted Patterns

We assume that the lattice structure of an affine distorted repeated pattern is given. The problem

is this: given a 2D repeated pattern which has possibly gone through some affine transformation,

what is its symmetry group? Immediately we need to answer the question that given a 2D repeated

patternS in Euclidean space, whether it still makes sense to talk about the symmetry group of

A(S), whereA is a general affine transformation? The answer is yes, this is becausea 2D re-

peated patternS with symmetry groupG remains to be a 2D repeated patternA(S) under affine

transformationA.

Proof:

SinceS is a repeated pattern, there are two independent translation vectorst1; t2 such that for

any points 2 S;9s0 2 S; s0 = tn
1
(s) + tm

2
(s) wheren;m are integers including zero. All suchs0s
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form a 2D grid.

Given the invariant properties of affine transformations: parallelism, segment division ratio,

betweenness and midpoints properties [3, 20], whenS undergoes an affine transformationA, for

any three consecutive grid pointsa; b; c of the original patternS parallel with t1, 9t such that

A(a); A(b); A(c) are collinear,A(b) is in betweenA(a) andA(c), andA(b) = t(A(a)); A(c) =

t(A(b)) = t2(A(a)). Using induction, this can be expanded infinitely for any triplet points along

t. Similarly, we can proof this for any three points alongt2 direction inS in t0 direction inA(S)

wheret; t0 are linearly independent of each other (provided no degeneration into one line). There-

foreA(S) is a 2D pattern that repeats alongt; t0 respectively. 2

ThusA(S) has to have one of the 17 wallpaper groups as its current symmetry groupG0, though

it is not necessarily true thatG = G0. The second question: Since the five possible lattice types

of the 17 wallpaper groups can be transformed into each other freely under affine transformations,

under which lattice type should the symmetry group of a given pattern be defined? There are two

observations to be made here:

� Although there are five possible lattice types for the 17 distinct wallpaper groups, there

are only two basic definite types: square and hexagonal. The justification for this is that

square lattice is a special case for parallelogram, rectangular and rhombic lattices, each of

the latter types has a non-determined parameter in its shape (adjacent edge ratio or angle),

and the deformation of the latter to the former does not destroy any of their corresponding

symmetries (this fact can be verified one by one using the proven results in Sections 4.2.1

and 4.2.2).

� In terms of the hierarchy of symmetry groups, we take the stand as stated in [17], a more

symmetrical structure is preferred over a less symmetrical one, i.e. a strongly symmetrical

structure that a pattern can be affinely deformed into is NOT an accident. Thus if more

symmetries present themselves when the lattice of a pattern is turned into a square lattice

that fact is to be explicitly acknowledged regardless of the original intentions of the pattern

designer.

These two observations lead us to divide the 17 wallpaper groups into two separate sets, those

of “square” lattices: groups 1 to 12 and those of hexagonal lattices: groups 13 to 17 (See Table 2,

they are in the same order as listed in Figure 5).

The idea of classifying a 2D repeated patternS is to first perform an affine transformation to

“normalize” the detected lattice structure into some standard form then test for the symmetries

known to survive that transformation. Using the invariance results from Sections 4.2.1, 4.2.2 and
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Table 2: 17 Symmetry Groups and Their Symmetries (adopted from [15]). Here ‘+’ means all

rotation centers lie on reflection axes, a nd ‘*’ means not all rotation centers on reflection axes

Symmetry IUC Lattice Rotation Reflection

Group Notation type orders axes

1 p1 parallelogrammatic none none

2 p2 parallelogrammatic 2 none

3 pm rectangle none parallel

4 pg rectangle none none

5 cm rhombus none parallel

6 pmm rectangle 2 90o

7 pmg rectangle 2 parallel

8 pgg rectangle 2 none

9 cmm rhombus 2 90o

10 p4 square 4 none

11 p4m square 4 + 40o

12 p4g square 4 * 90o

13 p3 hexagon 3 none

14 p3m1 hexagon 3 + 30o

15 p31m hexagon 3 * 60o

16 p6 hexagon 6 none

17 p6m hexagon 6 30o
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4.2.3, we can make a series of logical tests according to which symmetries are preserved after

normalizing, and narrow down the range of choices to hopefully one.

In the following, we present three variations of the above idea to construct a symmetry group

classification algorithm for a 2D repeated pattern under affine transformation.

4.3.1 A Sequential Approach

Figure 6 displays a symmetry group classification algorithm. Here we divide the 17 wallpaper

groups into three separate sets: the groups with hexagonal lattices (groups 13-17), with square

lattices (groups 10-12) and the rest (1-9). There is an underlying ranking here that the first set is

more symmetrical than the second, and the second is more symmetrical than the last set. This is the

reason why the algorithm follows this particular sequential order: first deform the current lattice to

a hexagonal one to check whether it is one of the symmetry groups in set one; if not, deform the

lattice into a square and check whether the symmetry group is in set two; if not, then the symmetry

group has to be in set three.

If a pattern does not have a 4-fold (3-fold) symmetry after deforming to a square (hexagonal)

lattice then any of the symmetry groups of a square (hexagonal) lattice must not be the right

symmetry group for the pattern. Instead, the symmetry group must be from groups 1 to 9 listed

in Table 2. Using 2-fold symmetry test, the hypothesis for the possible group can immediately be

narrowed down to either the five which has 2-fold symmetry or the four which does not.

Figure 6 shows only one possible way to go through all the possibilities, which is conceptu-

ally clear and computationally effective. In average four or less symmetry tests are needed for

determining a unique symmetry group, with a maximum of 5 tests and a minimum of 3.

4.3.2 A Semi-Parallel Approach — a “double” signature

This is a modification of the previous approach due to the consideration that for a more complete

characterization of a pattern under affine deformation, both the symmetry group of the pattern

under hexagonal lattice and the symmetry group of the pattern under square lattice should be

recorded. This is helpful for distinguishing between patterns that has a unique symmetry group

invariant of the affine transformation applied (Figure 7) and those patterns that can have non-

trivial symmetry groups under both deformations (a pattern of lattice points). Some patterns have

a unique symmetry group regardless of how the pattern is deformed under affine transformation.

For example, the pattern in Figure 7 has symmetry groupp1 under both square and hexagonal

lattices. On the other hand, some patterns may have an inherent “ambiguity” in terms of their

symmetry groups when the pattern itself is deformed, the simplest example is pattern composed
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Figure 6: A sequential algorithm for symmetry group classification of 2D repeated pattern under

affine transformation: Y(glide) means the reflection symmetry must be a non-trivial glide reflec-

tion. Y(n) / N(n) means the test result is positive/negative andn possible symmetry groups need

to be further distinguished.n-fold means checking forn-fold rotational symmetry. T1-ref means

checking reflection symmetry parallel with generating vector T1. D1 or D2 means reflection sym-

metries along the diagonal of the lattice.
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of lattice points alone. This pattern can have symmetry groupsp2; cmm; pmm; p4m or p6m when

deformed into parallelogram, rhombic, rectangular, square and hexagonal lattices respectively.

Figure 7: The 2D repeated pattern with symmetry groupp1, from [15]

The algorithm for this approach is shown in Figure 8. The result from this algorithm is a pair

of symmetry groups, one is computed under hexagonal lattice and the other is under square lattice.

Now, a given 2D repeated pattern under affine transformation is not necessarily bounded to only

one unique symmetry group as in the Euclidean case, rather it is given a double symmetry group

‘signature’.

4.3.3 A Migration Diagram Approach

This approach differs from the above two in that instead of using a standard lattice form, it first

finds what symmetry groupG it is as if in Euclidean space using the algorithm presented in Section

3. Then answer the question “what group could this pattern come from?”. For each of the 17

wallpaper groupsG, a “migration diagram” ofG is constructed. This migration diagram is a graph

with wallpaper groups as nodes and arcs relating them showing what other symmetry groups this

current pattern with groupG can possibly “migrate” to/from when the pattern is affinely modified.

The 17 wallpaper groups can be divided into exclusive sets in different ways. One is to divide

them into the set with 2-fold symmetry and the set without. The other way is to divide them into

hexagonal lattice type and the “square” lattice type. There are some basic rules we can follow to

establish arcs in a migration diagram:

1. the group with 2-fold symmetry can only migrate to groups that have 2-fold symmetry
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Figure 8: A semi-parallel algorithm for symmetry group classification of 2D repeated pattern

under affine transformation: Y(glide) means the reflection symmetry must be a non-trivial glide

reflection. Y(n) / N(n) means the test result is positive/negative andn possible symmetry groups

need to be further distinguished.n-fold means checking forn-fold rotational symmetry. T1-ref

means checking reflection symmetry parallel with generating vector T1. D1 or D2 means reflection

symmetries along the diagonal of the lattice.
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2. the group with diagonal reflection(s) symmetry can only migrate to groups with diagonal

reflection(s) symmetry

4.4 Under Perspective Transformations

At this point, we are not concerned with finding the repeated patterns in a perspective scene. There

is previous work on this subject [18, 24]. What we are interested in is when a distorted repeated

pattern is found, determining which of the seventeen symmetry groups this pattern possibly belongs

to.

Instead of carrying out the classification procedure in perspective space directly, we take a

detour into affine space. Using other cues in the image, such as two vanishing points, we construct

a transformation to unwarp the projection from perspective to affine by sending the horizon line

to infinity [4]. This reduces the perspective transform to an affine one, and the affine algorithm

introduced above is used. If we know the camera parameters, the plane can be unwarped to a

similarity transformation of the original 2D pattern [4], and we can directly apply our Euclidean

algorithm from Section 3.

5 Experimental Results

The examples in this section serve to illustrate the symmetry classification algorithm. The first two

are synthetic images taken from a web page about wallpaper groups, maintained by David Joyce

at Clark University. We have successfully processed all seventeen of his patterns (See Section 7).

Although they could be processed directly since they are generated Euclidean patterns, we perform

the general classification routine for affine distorted images in order to illustrate the method.

The first step is to determine the underlying translational lattice structure of the original image,

in the form of two independent generating vectorst1 andt2. Since we are assuming that the wall-

paper pattern has been previously isolated, the lattice points are determined by finding significant

peaks in the pattern’s autocorrelation surface (Figure 9a-c). If the pattern was embedded in a larger

image, a more robust local method such as [24] would need to be employed – here we are only

concerned with classifying a previously detected pattern. The lattice of dots is decomposed into

two generating vectors by finding the two shortest difference vectorst1 andt2 such that the angle

between them is between 60 and 90 degrees.

The second step involves transforming the lattice to a square grid, aligned with the horizontal

and vertical axes (Figure 9d-f). This is performed by applying an affine transformation to the image

and its autocorrelation surface. The transformation used is the unique affine transform leaving the
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origin (0,0) fixed and takingt1 to (L; 0) andt2 to (0; L), whereL is the larger of the two generating

vectors lengthsjjt1jj andjjt2jj.
After transforming to a square lattice, a square generating region (with dimensionsL � L)

is cropped from the transformed image. This is used as a template for further processing. In

particular, rotated and reflected versions of the template are correlated with the transformed image

to determine what, if any, type of rotation and reflection symmetry it has. Figure 10 shows a suite

of rotated and reflected patterns to be correlated with the transformed image shown in Figure 9d. In

the location determined by the highest correlation peak, a match score between the rotated/reflected

template and the image is computed as the mean of the absolute difference between corresponding

intensity values. The lower the value of this match score, the more likely it is that the image has

that particular rotational/reflection symmetry. A threshold value is set by computing the match

score between the original square generating region and the image at each node of the generating

lattice. This yields a set of “typical” match scores for that pattern – the mean and standard deviation

of these scores are used as an adaptive threshold tailored for this pattern. Match scores associated

with rotated/reflected templates are compared to this threshold to determine whether that particular

symmetry holds.

The table below contains match scores for the rotation and reflection templates shown in Fig-

ure 10:

rot180 rot120 rot90 rot60

0.063 0.251 0.275 0.250

H refl V refl D1 refl D2 refl

0.275 0.270 0.068 0.068

Compared to a reference match score of 0.061 with standard deviation of 0.026 (note, these are

computed from absolute differences between intensity values for images that have been scaled to

range between 0 and 1 – multiply these numbers by 255 to get corresponding thresholds for 8-bit

grey scale images), we find that the pattern has only 2-fold rotational symmetry, and a symmetry

under reflection across both diagonals. The pattern is therefore uniquely determined to be from the

cmmwallpaper symmetry group.

A second example is shown in Figure 11. Similar processing was performed, to yield the lines

labeled “square” in the table below:
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rot180 rot120 rot90 rot60

square 0.040 0.279 0.296 0.269

hexag 0.040 0.038 0.310 0.043

H refl V refl D1 refl D2 refl

square 0.272 0.275 0.269 0.268

hexag 0.269 0.271 0.271 0.271

We find that the pattern has two-fold rotation symmetry only, and in particular no additional re-

flection symmetry, when represented using a square lattice grid. According to the classification

algorithm described in the previous section, we next transform the image to a hexagonal lattice

structure. This is done by performing the unique affine transformation leaving the origin (0,0)

fixed, and mappingt1 to (L; 0) andt2 to (L=2; L � (p3=2)), whereL is a length chosen as before.

The lines labeled “hexag” in the table show rotation and reflection results for the hexagonally trans-

formed pattern. We see that now, in addition to two-fold symmetry, the pattern also has 60 and 120

degree rotational symmetry. There are still no reflection symmetries. Based on this information,

the pattern is uniquely classified as being from thep6wallpaper symmetry group.

The third example presented here is a real travel photo, taken off the web (Figure 12). Ar-

chitectural photos are a good source of symmetric patterns, particularly frieze groups, but also

occasionally for 2D lattice-work as shown here. For real images, the need to take unknown affine

distortions into account is important in order to deal with potential non-isotropic scalings intro-

duced by the digitization/scanning process and the viewing angle. Although unknown pose with

respect to a planar surface introduces a projective transform of the pattern, this can be approxi-

mated locally by an affine transformation, particularly when the viewing angle is not too oblique

to the surface. The doorway lattice was cropped by hand and presented to the wallpaper classifica-

tion algorithm. Figure 12 shows the lattice pattern determined both before and after transformation

to a square grid.

The following table shows the results of reflect/rotation processing on the transformed image:

rot180 rot120 rot90 rot60

0.038 0.168 0.044 0.179

H refl V refl D1 refl D2 refl

0.064 0.034 0.038 0.045

As compared to a reference match score of 0.065 with standard deviation 0.035, we see that the

pattern has 180 and 90 degree rotational symmetry, and all four reflection symmetries. These

results uniquely determine that the pattern is from thep4mwallpaper symmetry group.
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The forth example is also from a real photo: a building with many windows. This is a case

where perspective distortion is approximated as affine distortion. The resulting symmetry group is

Pgg. Computation steps and intermediate results are presented in Figure 13.
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(a) (b) (c)

(d) (e) (f)

Figure 9: Example of transforming to a square lattice for analysis, using thecmmwallpaper group. (a)

original image. (b) autocorrelation of image. (c) detected lattice points. From these lattice points, an

affine transform to a square grid is computed. (d) transformed image. (e) transformed autocorrelation. (f)

transformed lattice points, now a square grid.
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orig rot180 rot120 rot90 rot60

H refl V refl D1 refl D2 refl

Figure 10:Lattice generating regions, used as templates to determine what types of rotational and reflection

symmetry the wallpaper pattern has. Top left is the original generating region template. The next four tem-

plates are rotated by 180, 120, 90 and 60 degrees, respectively. The remaining four are reflected horizontally,

vertically, and across the two diagonals of the region.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11: Example of transforming to a square lattice for analysis, using thep6 wallpaper group. (a)

original image. (b) autocorrelation of image. (c) detected lattice points. From these lattice points, an

affine transform to a square grid is computed. (d) transformed image. (e) transformed autocorrelation. (f)

transformed lattice points, now a square grid. From analysis, it becomes clear that a hexagonal grid is

more appropriate. (g) hexagonal transformed image. (h) transformed autocorrelation. (i) transformed lattice

points, now a hexagonal grid.
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(a) (b) (c)

(d) (e) (f)

Figure 12:Real image taken off the web. The lattice on the door hasp4wallpaper symmetry. (a) cropped

subimage. (b) autocorrelation. (c) detected lattice points. From these lattice points, an affine transform to

a square grid is computed. (d) transformed image. (e) transformed autocorrelation. (f) transformed lattice,

now a square grid.
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Figure 13: This is an example of treating perspective distortion as affine distortion, using the same

classification algorithm to find its symmetry group: pgg.
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6 Discussion and Conclusion

We have presented, for the first time, an algorithm for wallpaper symmetry group classification

given a 2D repeated pattern. Using the invariant properties of certain symmetry subgroups, we ex-

tend the algorithm to work on 2D patterns under affine distortion. Our experiments show promising

results.

Once again, we emphasize that in the same spirit as stated in [17], a more symmetrical structure

is preferred over a less symmetrical one. This philosophy affects our affine classification algorithm

in that a pattern is classified as, say,p4m though it could be the result of a non-uniform scaling of

apmm pattern. In other words, if the pattern has the potential to be a “more symmetrical” pattern,

that fact will be acknowledged in our algorithm.

This is a report for an on-going research effort. There is still much remaining work. First of all,

a more complete set of justifications for the invariant and, especially, definite-variant symmetries

of wallpaper groups under non-rigid transformations need to be included. Secondly, a stress test of

the algorithms (both Euclidean and affine) is required, this will be done on a large set of repeated

patterns collected from the web, scanned images and digital photos. We shall also report our

testing results on Frieze patterns (they are omitted here since they are relatively simpler than the

wallpaper patterns). Thirdly, all the migration diagrams will be provided in the near future as the

third alternative for pattern classification under affine distortion. Fourthly, quantitative evaluation

of the algorithm and comparison of different classification and matching methods in speed and

complexity will be carried out. Lastly, application to projectively distorted patterns and other

computer vision applications will be explored.
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7 Appendix

Here we present the results from processing the 17 wallpaper patterns from [15]. Note, groups

p3m1 andp31m have been reversed in order to be consistent with the ordering in Figure 5 from

[26]. Tables 3 and 4 present results for automatic detection of rotational and reflection symme-

try. Each pattern was first analyzed “as is” (no pre-transformation performed), and the results are

reported in the row marked “none”. The pattern was then warped to have a square lattice and rean-

alyzed. The results are shown in the row marked “square”. Finally, the pattern was warped to have

a hexagonal lattice structure before analysis. These results are shown in the row marked “hexag”.

Each table entry is the score for that rotation or reflection symmetry — those entries marked in

bold font pass the acceptance threshold for that pattern. This is an adaptive threshold chosen for

each pattern in the manner described earlier.

The original pattern, and lattices found for it under the identity, square, and hexagonal warp

transformations, are shown for each pattern in Figures 14 to 30.

Figure 31 and Table 5 show results for a figure that was not processed completely correctly.

The pattern is p3. Although the rotation and reflection symmetries are correct for the original

pattern, they are incorrect after transforming the pattern to a hexagonal lattice, even though the p3

symmetry group should have a hexagonal lattice to begin with. We hypothesize that the error after

warping occurs because the pattern has fine details that not preserved under the bilinear warping

transformation. This points out the need to process the image after warping as little as possible. For

example, for this particular pattern, the original lattice was very close to hexagonal anyways, so

no further warping actually needed to be done. This also points out that our proofs and algorithms

can be correct, but still give the wrong results due to low-level image processing problems.
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pattern transform rot180 rot120 rot90 rot60 T1 refl T2 refl D1 refl D2 refl

none 0.259 0.357 0.264 0.338 0.275 0.270 0.295 0.287

p1 square 0.254 0.210 0.269 0.321 0.171 0.275 0.329 0.256

hexag 0.320 0.244 0.347 0.305 0.288 0.233 0.321 0.275

none 0.031 0.224 0.282 0.221 0.162 0.250 0.195 0.188

p2 square 0.042 0.245 0.230 0.285 0.196 0.193 0.228 0.227

hexag 0.035 0.264 0.262 0.263 0.173 0.253 0.214 0.212

none 0.271 0.327 0.278 0.345 0.065 0.271 0.293 0.290

pm square 0.254 0.292 0.258 0.284 0.037 0.255 0.256 0.259

hexag 0.257 0.285 0.292 0.273 0.248 0.270 0.270 0.257

none 0.257 0.283 0.270 0.309 0.256 0.060 0.310 0.309

pg square 0.232 0.282 0.260 0.267 0.232 0.093 0.256 0.259

hexag 0.251 0.292 0.288 0.301 0.290 0.243 0.315 0.246

none 0.226 0.281 0.268 0.315 0.277 0.276 0.2240.097
cm square 0.198 0.284 0.209 0.296 0.210 0.212 0.1970.066

hexag 0.202 0.247 0.297 0.215 0.226 0.237 0.2150.079

none 0.070 0.321 0.289 0.320 0.054 0.060 0.302 0.305

pmm square 0.063 0.315 0.274 0.371 0.047 0.062 0.276 0.275

hexag 0.070 0.342 0.394 0.336 0.343 0.321 0.274 0.276

none 0.060 0.312 0.324 0.297 0.067 0.077 0.340 0.306

pmg square 0.061 0.280 0.279 0.274 0.062 0.096 0.279 0.281

hexag 0.055 0.304 0.319 0.296 0.266 0.287 0.282 0.286

none 0.047 0.185 0.218 0.192 0.028 0.034 0.216 0.178

pgg square 0.042 0.173 0.209 0.189 0.027 0.056 0.210 0.213

hexag 0.044 0.208 0.246 0.200 0.182 0.158 0.217 0.216

Table 3: Table of results for automatic detection of rotational and reflection symmetry using an example

of each wallpaper pattern. For each pattern, it was first analyzed “as is” (no pre-transformation performed),

and the results are reported in the row marked “none”. The pattern was then warped to have a square lattice

and reanalyzed. The results are shown in the row marked “square”. Finally, the pattern was warped to have

a hexagonal lattice structure before analysis. These results are shown in the row marked “hexag”. Each

table entry is the score for that rotation or reflection symmetry — those entries marked in bold font pass the

acceptance threshold for that pattern.
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pattern transform rot180 rot120 rot90 rot60 T1 refl T2 refl D1 refl D2 refl

none 0.035 0.289 0.278 0.278 0.268 0.262 0.100 0.088
cmm square 0.045 0.260 0.271 0.252 0.273 0.278 0.086 0.092

hexag 0.052 0.266 0.274 0.261 0.264 0.262 0.104 0.100

none 0.075 0.358 0.078 0.351 0.220 0.202 0.196 0.203

p4 square 0.081 0.256 0.079 0.256 0.186 0.191 0.190 0.193

hexag 0.084 0.320 0.335 0.305 0.319 0.307 0.197 0.198

none 0.073 0.391 0.040 0.361 0.116 0.119 0.085 0.074
p4m square 0.077 0.290 0.093 0.301 0.089 0.092 0.078 0.073

hexag 0.085 0.281 0.340 0.277 0.273 0.279 0.092 0.091

none 0.041 0.309 0.028 0.324 0.040 0.038 0.039 0.031
p4g square 0.047 0.250 0.030 0.319 0.043 0.043 0.049 0.039

hexag 0.053 0.325 0.359 0.326 0.314 0.318 0.055 0.049

none 0.188 0.027 0.487 0.199 0.307 0.347 0.294 0.307

p3 square 0.185 0.332 0.315 0.324 0.317 0.313 0.287 0.296

hexag 0.183 0.028 0.315 0.176 0.282 0.301 0.276 0.287

none 0.357 0.121 0.479 0.355 0.354 0.356 0.041 0.356

p3m1 square 0.341 0.334 0.310 0.347 0.311 0.3150.055 0.342

hexag 0.327 0.071 0.353 0.326 0.325 0.326 0.061 0.327

none 0.286 0.074 0.325 0.295 0.081 0.091 0.335 0.089

p31m square 0.247 0.274 0.260 0.273 0.258 0.255 0.2760.079
hexag 0.271 0.066 0.297 0.281 0.080 0.082 0.274 0.083

none 0.049 0.040 0.244 0.051 0.268 0.264 0.262 0.262

p6 square 0.051 0.276 0.282 0.281 0.267 0.276 0.268 0.271

hexag 0.052 0.065 0.280 0.069 0.276 0.273 0.279 0.277

none 0.104 0.111 0.414 0.117 0.131 0.144 0.085 0.098
p6m square 0.110 0.316 0.299 0.314 0.299 0.295 0.092 0.085

hexag 0.105 0.102 0.334 0.109 0.104 0.122 0.097 0.096

Table 4: Continuation of the table of results for automatic detection of rotational and reflection

symmetry.
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Figure 14: Lattices found for the example of wallpaper group p1. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 15: Lattices found for the example of wallpaper group p2. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 16: Lattices found for the example of wallpaper group pm. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 17: Lattices found for the example of wallpaper group pg. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 18: Lattices found for the example of wallpaper group cm. (A) original pattern. (B) De-

tected lattice superimposed on pattern. The gray level of the pattern has been lightened to allow

easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a

square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice struc-

ture.
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Figure 19: Lattices found for the example of wallpaper group pmm. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 20: Lattices found for the example of wallpaper group pmg. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 21: Lattices found for the example of wallpaper group pgg. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 22: Lattices found for the example of wallpaper group cmm. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 23: Lattices found for the example of wallpaper group p4. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 24: Lattices found for the example of wallpaper group p4m. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 25: Lattices found for the example of wallpaper group p4g. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 26: Lattices found for the example of wallpaper group p3. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 27: Lattices found for the example of wallpaper group p3m1. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 28: Lattices found for the example of wallpaper group p31m. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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Figure 29: Lattices found for the example of wallpaper group p6. (A) original pattern. (B) Detected

lattice superimposed on pattern. The gray level of the pattern has been lightened to allow easy

viewing of the superimposed lattice. (C) Lattice detected after warping the pattern into a square

grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice structure.
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Figure 30: Lattices found for the example of wallpaper group p6m. (A) original pattern. (B)

Detected lattice superimposed on pattern. The gray level of the pattern has been lightened to

allow easy viewing of the superimposed lattice. (C) Lattice detected after warping the pattern

into a square grid structure. (D) Detected lattice after warping the pattern into a hexagonal lattice

structure.
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pattern transform rot180 rot120 rot90 rot60 T1 refl T2 refl D1 refl D2 refl

none 0.254 0.082 0.230 0.253 0.153 0.235 0.275 0.233

p3 square 0.125 0.127 0.145 0.135 0.140 0.143 0.098 0.116

hexag 0.135 0.171 0.216 0.232 0.129 0.227 0.258 0.221

Table 5: The row marked “none” is correct. However, the row marked “hexag”, which should give

the same results, fails to find the 3-fold rotational symmetry.
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Figure 31:Lattices found for a pattern wallpaper group p3, for which subsequent analysis on the hexago-

nally warped image does not work correctly.
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