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Abstract

We develop an efficient algorithm for unsupervised learn-
ing of object models as constellations of features, from low
resolution video sequences. The input images typically con-
tain single or multiple objects that change in pose, scale
and degree of occlusion. Also, the objects can move signifi-
cantly between consecutive frames. The content of an input
sequence is unlabeled so the learner has to cluster the data
based on the data’s implicit coherence over time and space.
Our approach takes advantage of the dependent pairwise
co-occurrences of objects’ features within local neighbor-
hoods vs. the independent behavior of unrelated features.
We couple or decouple pairs of features based on a prob-
abilistic interpretation of their pairwise statistics and then
extract objects as connected components of features.

1. Introduction

Despite a lot of recent interest, learning from unlabelled
data still remains one of the most challenging problems in
the fields of computer vision and machine learning. Here
we present an efficient method for learning object models as
constellations of features in an unsupervised manner, from
image sequences sampled from low resolution video.

Fergus et al ([1]) have proposed a method for unsuper-
vised learning of object categories by fitting specific models
to an input sequence containing objects of the same type,
shown at different scales, similar pose, with cluttered back-
grounds and a limited amount of occlusion. They model
differently the object category, the occlusions and the back-
ground. They implicitly assume that the category of inter-
est is the only coherent collection of parts over the input
sequence, while the objects in the background display lack
of structure and consistency. This assumption is valid so
long as the object of interest is always in the foreground
and covers a large part of the image, which requires careful
selection of image sequences.

In video sequences the object of interest is not always in
the foreground. New objects might come in the foreground
and display consistency and coherence over time. We want
to model the data in a way that will implicitly separate these
objects. This is achieved by modelling the relationships
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Figure 1: First two rows: subset of a 6 seconds long input se-
quence (frames were sampled at 5 fps). Last two rows: the object
discovered (magnified). The squares displayed represent a con-
nected component of co-occurring parts, classified as belonging to
the same object

between parts belonging to different objects (either back-
ground or foreground objects) as having random behavior,
while assuming that parts belonging to the same object have
consistent, structured behavior (Figure 1). These relation-
ships between pairs of parts are independent of the camera
position in the world or which is the object we are interested
in. One application of this idea is in learning from tracking
sequences, where the tracker might accidentally drift to a
different object. Since our approach does not assume any-
thing about which object/objects are present in each frame
or their location in the image, we are able to separate the
original object from the distracting objects.

Ramanan and Forsyth pursue the idea of learning from
tracking ([7]). They build models of animals from time co-
herent clusters that represent different body parts. Sivic and
Zisserman attack the problem of extracting significant re-
gions/patterns from video in [9]. Similar to data mining
techniques for text databases, they extract neighborhoods
of features that repeatedly reoccur over time. These papers
do not explicitly model temporal dependencies between fea-



tures, which leaves open the question of how to couple (de-
couple) parts that belong to the same (different) objects in a
principled way.

In the case of rigid bodies and high resolution images,
structure from motion techniques can be applied to recover
the object models ([8]). However, in unsupervised scenar-
ios, even more complex geometric techniques would need
to answer the following question: for how long does a set
of features have to display geometric consistency until it can
be reliably classified as belonging to the same object ?

If their parts can be well detected and matched, even ob-
jects with a complex non rigid structure can be separated
from the rest of the world by means of simple local co-
occurrences of their features. While co-occurrences are rel-
atively easy to monitor as compared to more complex geo-
metric relationships, they are also very discriminative. This
happens because features belonging to independent objects
will not co-occur consistently, while features belonging to
the same object will almost always co-occur. After recov-
ering the objects as groups of features, more refined geo-
metric models can be used to actually recover the objects’
structure. This splits the unsupervised learning process in
two steps: the first is for grouping parts that belong to the
same object and the second for processing each object in-
dividually in order to recover its actual spatial structure. In
this paper we focus on the first step, in the case of objects
from low resolution images.

In data mining, Kubica et al. ([3], [4]) use co-
occurrences for discovering groups of people in an unsu-
pervised manner. They use generative models more appro-
priate for human behavior, but the concept of linking tem-
porally dependent entities by observing their co-occurrence
is similar to our approach to learning about physical objects.

1.1. Approach

Physical objects can be represented as collections of observ-
able features that co-exist over time and also display a corre-
lated behavior. These properties stand in high contrast with
the independent behavior of features that belong to different
entities.

We need to simplify the problem in order to be able to
handle it practically. As in previous approaches, we rep-
resent objects as clusters of features/parts. Currently this
is one of the main approaches in object representation ([1],
[6]). We can use any feature of the object’s appearance that
can be robustly matched over time, under different in-plane
rotations, changes in scale or slight changes in pose.For the
purpose of this paper we are representing every feature (or
keypoint) as a 128 dimensional SIFT descriptor, its location
and scale, and the orientation of the main intensity gradient
within its scaled neighborhood ([6]). We locate the features
with the DOG detector, as developed by Lowe ([6]). There
are other choices of features descriptors and detectors that
could also be used (|2]).

A priori we do not know the number of objects, their

o

range of pose, or the number of parts belonging to each ob-
ject. Therefore we first focus on modelling the interdepen-
dence between pairs of parts and later use these pairwise
connections to recover the whole objects.

We assume that any keypoint detected in an image is the
appearance of some part in the real world. Then, any two
parts detected in a given frame either belong to the same
aspect/face of an object (and implicitly belong to the same
object) or belong to different objects. There is no explicit
concept of background, clutter or foreground. They are all
objects and it is left to the learner to figure out how to group
the parts into objects.

The algorithm is divided in three phases as follows: In
the first phase (Section 2) we extract interest points and
match them across frames. We process the frames sequen-
tially, in a greedy fashion, to reduce the computational com-
plexity. At every frame we try to match the keypoints in the
current frame with clusters of matched keypoints from pre-
vious frames. We will refer to such a cluster as a part since
it contains key points that should represent the appearances
of the same physical part. At this stage we also count co-
occurrences of pairs of parts within local neighborhoods,
and use affine pairwise geometric constraints for invalidat-
ing possible wrong matches.

In the second phase (Section 3) we classify pairs of parts
as dependent (belonging to the same aspect of an object)
or independent, by using probabilistic models for the two
classes. We label each pair with the MAP estimate based on
that pair’s co-occurrences accumulated over the sequence.

In the third phase (Section 4) we form objects as con-
nected components of dependent parts, using the pairwise
labelling done in Section 3. Then we check the robust-
ness of the connected components obtained by using ran-
dom graph sampling, and prune them accordingly if neces-
sary.

2. Observing co-occurrences

A part p; = {ki, k5, ... kL } is a collection of key points
ky = (dy, x4, Yy, S, 0y). Each key point from p; has been
extracted from some frame and included in p; after match-
ing p;, as explained below; d, is a 128 dimensional SIFT
descriptor, (x4, yq) is the location in the image, s, the cor-
responding scale and 6, the angle of the main gradient com-
puted within the scaled neighborhood at that location (see
[6] for more details). The geometry (location, scale and ori-
entation) of a key point is represented by two image points,
given by [(z4—s4 €08 0q, Yg—5¢8inby), (xg+sq cos by, yg+
548in6,)]. Therefore a pair of key points is represented as
4 points. (Figures 2(a) and 2(b)). These points are used in
monitoring the affine geometry of pairs of parts.

At every frame we first try to detect parts from previous
frames by matching the key points from the current frame
with the parts (= clusters of key-points) collected from pre-
vious frames. These key-points will be added to the parts



they match or start forming new clusters if they did not
match any old ones.

For every current k, we find its nearest part p;, where
the distance d(k,, p;) between k, and any part p; is defined
as the smallest Ly norm between the SIFT descriptor of &,
and the SIFT descriptor of any of the key-points of p;. Then
we check the following conditions to insure that, given the
current frame, one key point can match only one part and
vice-versa, and that the matches are well separated from
the non-matched pairs (similar conditions were required by
Lowe [6]):

1. d(kq,p;) < threshl. We use threshl = 300 (this is a
loose threshold; most matches are within a distance of
150).

2. d(kq,pi)/d(kq, D) < thresh2  and
d(kq,pi)/d(kw.pi) < thresh2, where p; is the
second closest part to k,, and k,, is the second closest
key point from the current frame to p;. We use thresh2
=0.7.

Key points k, that fail condition 1 are labeled as new
parts only if they obey the additional constraints d(kq, p;) >
thresh3 , where thresh3 > threshl (we used thresh3 =
350). This is necessary for reducing the risk of creating new
clusters from key points that have been misclassified as not
belonging to old clusters.

All k, that meet only condition 1 are discarded because
they are not discriminative enough and will introduce am-
biguity in later matching. This approach is similar to ap-
proaches from text classification literature where very com-
mon words like ”the” and “a” are discarded. A similar ap-
proach was also taken by Sivic in [9].

The new parts and the detected parts (the ones matched
by some k, such that conditions 1 and 2 are met) are
counted as co-occurring in the current image only if their
affine pairwise geometry remains consistent with their pre-
vious ones, and if they remain relatively close to each other
during the sequence. The details and the motivation for
these constraints are discussed next.

The first assumption is that, in general, objects occupy
compact regions in space. To take advantage of this prop-
erty we will allow only parts that are relatively close to
each other to establish relationships of direct dependency.
Parts that are farther away from each other can still become
dependent but only through dependencies with intermedi-
ate parts. The closeness of two parts is measured relative
to their natural scale. The DOG detectors return a natu-
ral scale for each part. We define the neighborhood of a
pair of parts (A, B) as a multiple of their average natural
scale: k x mean(sa, sp). For example, we do not want
parts from one corner of a relatively large image to build
dependencies with parts from the other corner unless they
are indirectly dependent through other intermediate parts.
In this manner the process of learning pairwise dependen-
cies becomes invariant to the size of the input image. More

(a) Pair of unrelated parts. The circles indicate the scale and positions of the
two parts; the corners of the quadrilaterals are the 4 points associated with
each pair. These pair co-occurred only 3 times out of 20 but most unrelated
pairs co-occurred for less than 3 times. Also notice how their pairwise geom-
etry slowly departs from their initial one

(b) Pairs of parts that belong to the same object tend to co-occur most of the
time. These two parts were detected together in 16 frames out of 20

Figure 2: Dependent (b) vs independent (a) parts

precisely parts (A, B) can be considered as co-occurring
in the current frame only if /(24 — 24)2 + (Yg — Yu)? <
kxmean(sa, sp)(we set k = 5, but different values worked
as well).

The second assumption is that objects are almost rigid
locally. Our input sequences consist of shots taken from
distant view-points relative to the size of the objects (cars
in our case). Since the object is seen at a low resolution,
we can check reliably only simple geometric dependen-
cies. The scene is far enough so that we can consider we
have an affine camera. Therefore, the pairwise geometry of
any two neighboring parts belonging to the same object (2
points from each part as explained previously) goes through
affine transformations in the image plane as the view-point




changes. Consequently, if two parts (A, B) detected in the
current image happened to co-occur previously, we impose
the additional requirement that their current pairwise geom-
etry (defined by 4 points) has to be affine equivalent to the 4
points associated with their first co-occurrence. Similarity
constraints would also work. Figures 2(b) and 2(a) illustrate
how dependent parts keep a consistent pairwise geometry
over time, as opposed to independent parts. We also use
the geometric constraints for invalidating possible wrong
matches: if a part (seen previously) is matched in the cur-
rent image, it is kept as a valid detection only if it validly
co-occurs (it passes the co-occurrence constraints) with at
least one other part with which it co-occurred at least once
before. We found that in practice this requirement filtered
out most of the invalid detections.

3. Interpreting co-occurrences

In this section we look for appropriate probabilistic mod-
els in order to classify every pair of parts (¢, 7) as either
dependent (belonging to the same aspect of an object) or
independent, given their observed individual counts n;, n;
and their pairwise count 7.

In the case of distant cameras the range of view points
from which an object is seen can be represented as a sphere
of unit radius. The range of view-points from which a par-
ticular point A on the object’s surface is visible becomes a
2D region V4 on the view sphere (Figure 3). Pairs of points
(A, B) from the same object, whose visibility areas V4 and
VB have significant overlap are likely to co-occur in images
of that object taken from random view points. More pre-
cisely, if the set of view-points is sampled uniformly on the
view sphere, the probability of seeing both A and B (ran-
domly picking a view point v from V5 (| V1), given that we
see one of the two ( thatis v € V4 |J Vi) is equal to the ra-
tio of the overlapping area of V(| V4 and the area of the
union region Va4 U Vp: p(v € Vg Valv € VU Va) =
Area(Vg (\Va)/Area(VaJ Vi) = rap. The ratio r4p
can be interpreted as a measure of closeness between two
parts on the object, and happens to be equal to one minus
the Tanimoto distance between V4 and Vg, which is a stan-
dard metric between two sets. In the presence of occlusion
due to other objects or detection errors, we expect the co-
occurrence probability to be smaller than r 4 5, but one can
show that it will not decrease significantly if the errors in
detection or probability of occlusion due to other objects
are relatively small.

In order to discriminate between pairs that highly co-
occur and the pairs of unrelated features that rarely co-
occur we define the notion of a co-occurrence set. A co-
occurrence set Sy, is a collection of parts from the same
object such that for any two parts (A, B) € S, the ratio
rap = Area(Vp (N Va)/Area(VaUVe) = py.

In the absence of other information we assume that the
view point on the view sphere is sampled uniformly over the
input sequence such that p(v € Vg (Valv € Ve UVa) =

2D Section of an object. The set of view points represented
as a unit sphere

A2

part A is visible only A is visible

Part A
; B2

= part B Bl
Bl Al
part B is visible

both A and B
are visible

Figure 3: For a random view-point the probability that the pair
(A, B) occurs when at least one of the two parts occurs is equal
to the ratio of the common area of visibility and the union of their
visibility areas. Small deformations of the object do not affect this
ratio significantly.

r4p. Then, for any pair in the same co-occurrence set we
approximate p(A () B|A|J B) with the lower bound p; and
obtain a pairwise Bernoulli distribution for their conditional
co-occurrence.

In reality, the conditional p(v € Ve ([ Valv € Ve U Va)
is different for every pair (A, B) € S,,, since it depends
on the parts” actual location on the object and the object’s
structure. In practice a lower bound approximation of the
conditional probability of correlated parts is enough for dis-
criminating them from pairs of independent parts.

We model the co-occurrence of unrelated parts
p(ANB|AUB) = p_ as another Bernoulli distribu-
tion. Different objects have different frequencies of co-
occurrence (ex. cars from different cities vs. cars from
the same neighborhood), but these frequencies are expected
to be close to zero. If we think of the world of an ob-
ject as a set of w disjoint sites reachable by that object,
and let our object be present at a particular site with uni-
form probability i, then the expected probability of co-
occurrence of two independent objects from the same world
at a particular site is p(A () B|A|J B) = 52— . Obviously,
the bigger the world considered the smaller the probability
p(AN B|AU B). In our experiments we fixed p_ to 0.02,
which is the smallest strictly positive co-occurrence count
WAB = el —— we can get from a 51 frame input se-
quence (ma:c(nAril;iterfiignAB ,1)) =
number of frames in the sequence.

Parameter p has direct influence on the size of the
co-occurrence sets. The larger p; the smaller the co-
occurrence sets. On the one hand, we want large co-
occurrence sets that overlap and cover the whole objects,
but on the other hand we want a large p, as compared to p_
such that the two Bernoulli distributions are well separated.
In the experiments section we will analyze how parameter
p4 affects the performance.

As the individual occurrences of parts ny and ng in-

), where N is the



crease we expect the relative co-occurrence ——42—— of
Atnp—nap |
related parts to approach a value close to their true ratio
Area(Vp (Va)/Area(Va|J Vp), and the co-occurrence
of unrelated parts to approach zero (or a value very close

to zero).

Now we have generative models for two classes: class O
for pairs that belong to the same co-occurrence set and class
=0 for the rest of the pairs, which we consider as indepen-
dent. Pairs of parts that belong to the same object but have
very little overlap in visibility cannot be discriminated from
pairs of unrelated parts in a pairwise way, but only through
connections with intermediate parts.

We label the pairwise links with the class C € {O, -0}
that maximizes the MAP estimate.

p(nag.na,np/C)Pe
EQQ{(),ﬁ()} p(nAb’: na, nB/Q)PQ
()
We assume that the priors Po = P.p, so the MAP
classification is equivalent to maximizing the likelihood
p(nap,na,np/C) = ptas(l — p)ratns—2nas where
p=p4 if C = O and p = p_ otherwise. Thus, we classify
as O when p“*7 (1—p_)1-wan) < Pyt (1—p, )(t-wan),

F — nNAB P .
where wap = P y——— Then we have:

Cap = argmax

1-py
1—p_

log 71:111 + log i—; )
O<p_<pyr<l1

log

wap >

A classification threshold th is set to the right hand side
of inequality 2, such that a pair (A4, B) is positively labeled
whenever wap > th. As discussed previously, the expected
value of w4 g, for randomly sampled view-points, is equal
to Area(Vis (Va)/Area(Va U Vi), if A and B belong to
the same object. This ratio is an invariant property of each
pair of parts of the same object. In the absence of any in-
formation about the relative camera viewpoint, we use only
wAp to separate such pairs from pairs of independent parts.
One can show that p_ < th < py, solong as p_ < py.
To reliably classify the pair (A, B) we need a large enough
Nap = na+np —nap. This intuition relates to concepts
from hypothesis testing. We have two simple hypotheses
corresponding to the two Bernoulli distributions discussed
previously. If we let the null hypothesis H( be that the pair
(A, B) is unrelated, we want to reduce the type I error of
accepting an unrelated pair (A4, B) as part of the same co-
occurrence set. By Chebyshev’s inequality, the type I er-
ror is proportional to the variance of wap (when A and
B are unrelated), which in turn is inversely proportional to
Nap. To reduce this error we classify (A4, B) as unrelated
if Nap < 10, regardless of the value of w4 4.

4. Grouping parts into objects

If both pairs (A, B) and (B, C) are classified as O (same
aspect/co-occurrence set) we cannot say anything about
whether pair A, C' belongs or not to the same aspect (or
co-occurrence set) in the absence of any other information.
However, what we can tell is that pair (A, C) belongs to the
same object. Therefore each pair is classified independently
of the others and then we can use the pairwise classification
to recover whole objects as connected components of parts.
If a connected component is large enough we can consider
it as a set of parts forming an object. Of course, errors in the
pairwise classification will affect the formation of compo-
nents. However, the more connected a particular component
1s, the less vulnerable it is to the accidental removal or ad-
dition of edges. Therefore, for any two parts (7, j) we want
to measure the confidence that they are indeed in the same
component.

A connected component V' can be interpreted as
Bernoulli random graph with vertices V' and edges £ =
{eijlpi; = p(O/ni,nj,ng) > 0.5} that defines a dis-
tribution over the undirected graphs with vertices V' and
edges ¢;; € LI being sampled with probability p;;, inde-
pendent of other edges. The posterior probabilities p;; =
p(O/ng,nj,n;;) are estimated from the likelihoods (Sec-
tion 3). Let C(A,B) be the set of all such graphs in
which parts (A, B) are connected. Then, the probability
p(A, B) that pair (A, B) is connected is equal to the proba-
bility of sampling a graph G € C(A, B) in which the pair
(A, B) is connected through at least one path: p(A, B) =
dGec(A.B) HeiJEEG bij HeijeEfEG(l — piz). The com-
putation time of this formula is exponential in the number
of edges, which makes it impractical to implement. We de-
cided to estimate it by simulation, which will estimate the
connectivity probabilities between all pairs of vertices in the
connected component with good accuracy in O(S * | E|3/2)
steps, where S is the number of samples. We generate ran-
dom graphs Gy, , k = 1....S by forming the edge matrix Ej,
such that I (%, j) = 1 with probability p;; and O otherwise.
Next we form the connectivity matrix Cj, = sgn((Ej)?).
Then ¢;; = 1 if the pair (7, ) is connected within at most
d edges and O otherwise (we choose d = 23, s0 C}, can
be computed with three matrix multiplications). We form

the matrix Ps = %% The value Ps(A, B) will be
a lower bound estimate of the probability p(A, B). The
standard deviation of this estimate is bounded above by:
std(Ps(A, B)) = <L (p(A, B)(1—p(4, B)} < 5.
We choose S = 1000.

Most connected components obtained from our input se-
quences were strongly connected, as indicated by high val-
ues (over 70%) of Ps(A, B) for all pairs in the same com-
ponent. This is explained by the fact that the vast majority
of pairs from the same component (95%) were connected
within a maximum of 3 edges (Figure 4).

There are other types of sequences for which larger com-



ponents can be formed. Imagine filming a large nearby
building as we slowly move around it. In this case parts
from one side of the building will be connected to parts
from the other side through a large number of edges, form-
ing a large connected component. In this case the values of
Ps(A, B) will discriminate between distant parts that are
connected through a large number of paths (high value of
Ps(A, B)) and distant parts connected through only one or
a few paths. Since a lower value of Ps(A, B) indicates a
higher vulnerability to accidental errors on edges, we can
make the components more robust by keeping only the max-
imal subset in which every two parts have Ps(A, B) >
pThresh.

0.5

0.4

0.3]

0.2

0.1

0'0123456789

Figure 4: distribution of the distance (in number of hops) between
pairs of connected parts from 25 input sequences

5. Experimental Analysis

In this section we look at the overall performance of the
algorithm, while examining quantitatively the variations in
performance as we vary the parameters affecting the unsu-
pervised learning module (p_ and p, ) and the size of the
input images relative to the objects size.

For each experiment we were interested whether a partic-
ular object was learned correctly from a particular sequence.
We manually assigned ground truth labels to all the parts
from the input sequence (clusters of key-points collected
and matched by the algorithm), thus forming the ground
truth sets G; (object parts) and G (the rest of the parts).
Then we picked the connected component C; formed by
the algorithm, which had the largest overlap with the ground
truth set G; (the true object parts). All those parts that be-
longed to the intersection of C; and (G; were considered
true positives (correctly classified as belonging to the object
of interest). The parts outside the union of C; and GG; were
the true negatives, while the parts in their set differences
were the misclassified ones ( G; — (1 the false negatives
and C7 — G the false positives).

We wanted p_ to be close to the smallest strictly positive
wap from a 30 to 60 frames sequence, so we chose 0.02
(Section 3). While it is clear that p_ should take a small
value, p, which controls the relative overlap between the
visibility areas of dependent parts on the viewing sphere,
could in theory take any value between 0 and 1. We expect
that the larger p. the smaller the number of false positives
(unrelated parts will be hardly grouped together), but the

higher the number of false negatives ( = the number of posi-
tive parts left outside of the object’s component). Therefore,
we examined more closely how the performance varies with
py. Wevaried p;. € 0.07...0.97 for all sequences, then for
every sequence we generated the ROC and classification er-
ror curves, as functions of p.

We tested the algorithm on 25 different sequences. They
varied in length (17 to 61 frames), frame rate (1 to 6 frames
per sec) , absolute temporal length (3 to 50 sec), absolute
image sizes (120 x 120 to 500 x 400) and relative image
to object size (4 to 70x the object size). The objects in the
sequences were turning, passing by each other, and occlud-
ing one another partially or sometimes totally (Figure 5).
The processing time per frame ranged from 0.3 to 2 sec in
Matlab, on a 2Ghz Pentium processor.

Figure 5 shows the results obtained on four different se-
quences all sampled at 4 frames per sec. Each sequence is
of a different type. Sequence 1 is particularly difficult due
to the relatively large amount of clutter (frame size 500 x
370, object size approximately 35 x 60, 500-600 key points
per frame, about 10 key points on the car). The clutter is not
well separated spatially from the object (the car is driving
through a forest road, with rich ground texture and vegeta-
tion nearby), but the temporal co-occurrences within local
neighborhoods separated the car successfully from its sur-
roundings. Sequence 2 contains a truck that turns 180 de-
grees. The algorithm is able to learn different aspects of
the truck and connect them together, while separating them
from another distracting car that is present in the sequence
for more than half the number of frames. In Sequence 3 five
vehicles that pass by each other are successfully learned si-
multaneously, without specifying a priori how many objects
were present in the sequence. In Sequence 4 a cabriolet un-
dergoes different degrees of occlusion and it is extracted
correctly.

Figure 6(a) shows the mean performance curve (solid
line) and the curve at one standard deviation below the mean
(dashed line), computed from tests on all 25 sequences. The
high mean and small standard deviation indicates that the
algorithm performs robustly in a variety of situations.

An important aspect of the performance evaluation was
to examine how the classification error varies with p (Fig-
ures 6(b) and 6(a)). On most sequences the performance
increases suddenly as p approaches 0.3. For values larger
than 0.3 the classification error stabilizes at around 6 — 7%.
The error curve and small standard deviation prove that the
performance is not sensitive to the parameter p. for values
larger than 0.3. This result is supported by the distribution
of co-occurrence weights w4 g on pairwise links from the
data (all 25 sequences). Using the ground truth labeling of
individual parts, we collected histograms of the weights of
pairs that belong to the same object and of pairs that be-
long to different objects. The two normalized histograms
obtained are displayed in Figure 6(c). Around the value
of 0.11 the histogram of independent weights (dashed line)



Input
Sequence 1

Object >
Discovered

Input
Sequence 2

Object
Discovered

|
-3

Input
Sequence 3

Objects
Discovered

~a

Input »
Sequence 4

v

Object #
Discovered

Figure 5: Results on different video sequences

drops almost vertically to near zero, below the histogram of
weights of dependent pairs (solid line), which continues to
decrease slowly. This suggests that a major increase in per-
formance will occur as the threshold on weights increases
above 0.11. That threshold (0.11) corresponds to p; = 0.3
(for p_ = 0.02), which validates the sudden jump in perfor-
mance at py = 0.3 obtained in experiments (Figure 6(b)).

The third aspect of the evaluation was to monitor how
the size of the image relative to object size affects the per-
formance. We ran this experiment on three different videos.
(Figure 5, sequences 1,2 and 3. Sequence 2 shows the
smallest size window, the others show the largest size). For
each video we selected 3 input sequences from the same
frames in the video (at 5 frames per second), but different
window sizes. The sizes varied from 12x to about 60-70x
the object size. The results (Figure 7) show that the perfor-
mance does not deteriorate as the window size increases.

We believe that the unsupervised learning module is not
sensitive to the amount of clutter or the number of objects
to be learned from the scene, so long as the objects behave
independently. The overall performance will be affected,
however, due to the fact that the errors in the matching of
interest points increase considerably as the window size in-
creases.

6. Conclusions

We have presented an algorithm that discovers objects in an
unsupervised manner from video sequences, by modelling
explicitly the dependent temporal co-occurrences of parts
belonging to the same object vs the independent behavior
of unrelated parts. The algorithm performs successfully in
a variety of complex situations, so long as the different ob-
jects behave independently and the matching of parts over
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Figure 6: Performance evaluation

frames is reliable. As future work, we have started to ex-
plore how the relationships learned between parts could be
used to refine the matching process, and to integrate the
matching and learning modules into the same probabilistic
framework.
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