
An Open Source Tracking Testbed 
and Evaluation Web Site
Robert Collins, Xuhui Zhou, Seng Keat Teh

Robotics Institute, Carnegie Mellon University
[rcollins, xuhui, steh]@cs.cmu.edu

Abstract:

We have implemented a GUI-based tracking testbed 
system in C and Intel OpenCV, running within the 
Microsoft Windows environment. The motivation for the 
testbed is to run and log tracking experiments in near 
real-time. The testbed allows a tracking experiment to be 
repeated from the same starting state using different 
tracking algorithms and parameter settings, thereby
facilitating comparison of algorithms.   We have also 
developed a tracking evaluation web site to encourage 
third-party self-evaluation of state-of-the-art tracking 
algorithms.  The site hosts source code for the tracking 
testbed, a set of ground-truth datasets, and a method for 
on-line evaluation of uploaded tracking results.

1. Introduction

This work addresses the need for tools and community 
resources for evaluating and comparing the performance 
of tracking algorithms.  The domain of current interest is 
tracking ground vehicles from airborne sensor platforms.  
To facilitate evaluation of tracking algorithms on such
datasets, we have implemented an open source, 
interactive tracking testbed using C and Intel OpenCV 
routines [3] within the Microsoft Windows operating 
environment.  The testbed allows a tracking experiment to 
be “replayed” using different tracking algorithms and 
parameter settings.

We have also set up a tracking evaluation web site where 
researchers can self-evaluate their own algorithms.  The 
primary features of the site are: 1) availability of data sets 
with ground-truth results;  2) sample baseline tracking 
algorithms implemented within the tracking testbed;  3) 
provisions for uploading results in a standard data 
format; 4) a mechanism for on-line, automated scoring of 
uploaded tracking results; 5) a table of algorithm rankings 
and pointers to publications describing each algorithm.

Related Work

The tracking evaluation web site is modeled after the 
Middlebury stereo evaluation web page [8]. This stereo 
page has been quite successful, since it is now nearly 
impossible to publish a new algorithm for two-frame 
stereo matching without documenting how well the 
algorithm performs on the Middlebury datasets. We 
believe that much of the success of the Middlebury site is 
due to the competitive nature of the online algorithm 
rankings table.  The competitive nature of the Middlebury 
page makes it fun for people to participate in the 
evaluation.

A web site for evaluation of face recognition algorithms is 
available from Colorado State University [1]. This site 
contains baseline implementations of popular face 
recognition algorithms and a set of recommended
evaluation protocols.  It does not currently contain an on-
line algorithm ranking system.

Evaluation of tracking systems is addressed annually by 
the IEEE Performance and Evaluation of Tracking and 
Surveillance (PETS) workshop series [6].  The goal of the 
PETS workshops is for researchers to run their tracking 
algorithms on the same datasets, submit results in an xml 
format, and publish their algorithm and results in the 
proceedings.  Most of the PETS datasets and algorithms 
are geared towards stationary camera surveillance, and 
therefore most algorithms rely on statistical background 
subtraction techniques to detect moving objects – an 
approach that is not directly relevant to airborne datasets 
where the camera is constantly in motion.  

In Section 2 we provide an overview of the open source 
tracking testbed, and describe in detail one module
available within it that provides background motion 
estimation and foreground motion prediction.
Section 3 presents the tracking evaluation web site, with 
an emphasis on its scoring metrics.



2. Open Source Tracking Testbed
2.1 Tracking Testbed System

We have implemented a GUI-based tracking testbed 
system in C and Intel OpenCV, running within the 
Microsoft Windows environment. We are distributing the 
code for public download as an open source resource.  A 
compiled executable is available for people who just want 
to run the tracker as is.  Complete source code is available 
for people who want to modify the functionality, or add 
their own tracking algorithms into the testbed.  A user 
manual and programmer reference guide are included 
with the distribution.

Figure 1 shows a screen capture of the tracking testbed.  
The object being tracked is outlined with a blue bounding 
box.  Along the top of the GUI is a menu of options.  At 
the far left, the “Open” option opens a directory browser 
that allows the user to select the first file (frame) in a test 
tracking sequence.  The user then interactively clicks four 
points of a polygon delineating the object to track.  After 
doing so, the “Track” menu option tracks the object 
through the sequence while displaying the updated 
bounding box at each frame.  Other menu options include 
“Stop” for pausing the tracker, “Step>” for single 
stepping the tracker forward by a single frame, and 
“Rewind” to bring up the first frame in the sequence 
again for another tracking run with the same initial 
polygon.  If “Log” is selected, results are logged for each 
frame for later replay.  “Predict” turns on motion 
prediction to enable tracking through occlusion. 

Functionality of the testbed includes:

Output Logging: When logging is turned on, tracking 
results for each frame are stored in ascii log files for later 
review.  Included in each log file is the current bounding 
box of the object in that frame and a binary bitmap that
specifies which pixels belong to the object versus the 
background.  The log file format is compatible with the 
automated scoring mechanism on the tracking evaluation 
web site (Section 3).

Replay of Experiments: Through use of the log files, 
previous tracking sessions can be read back into the 
testbed and replayed for review. Furthermore, the replay 
can be stopped at any frame and tracking restarted from 
that state using a different algorithm or set of parameters.

Batch Mode:  Although typical usage will be interactive, 
a batch tracking mode is invoked when the user opens a 
file that specifies a list of multiple sequences and 
polygons for tracker initialization.  When batch mode is 

invoked, the testbed performs tracking on each sequence 
in the list, without interruption, until the end of the list is 
reached.  This provides a way to run a set of tracking 
experiments overnight without intervention.

Figure 1: Screen capture of the real-time C tracking testbed, 
showing the tracked object bounding box and menu of 
interactive options displayed across the top of the graphical 
user interface.

Baseline Algorithms: A set of baseline tracking 
algorithms is provided with the testbed.  Many algorithms
are available (see Table 1).  For example, “Template 
Match” refers to normalized correlation template 
matching.  “Basic Mean Shift” is the algorithm from [5]. 
“Variance Ratio” refers to an algorithm from [4] that
selects a color tracking feature that maximizes the 
separability between feature histograms computed from 
the foreground target and its surrounding background 
region, prior to running mean-shift.  The adaptive version 
of this algorithm reruns the feature selection process at 
every 10th frame, otherwise the process is performed only 
once (nonadaptive). Our main effort at this time is adding 
new baseline algorithms to the list.

Table 1: Sample timings for baseline algorithms in the tracking
testbed, in frames per second. Each timing is shown both with 
and without the KLT-based motion prediction module turned on
(see Section 2.2). Timings are from an Intel Pentium-4, 2.4GHz
machine with 1 GB of RAM.
Tracker No Prediction 

(KLT off)
Prediction 
(KLT on)

Fg/Bg Histogram Shift 21 7
Basic Mean shift 18 7
Template Match 20 7
Variance Ratio 20 7
Variance Ratio Adaptive 
(Every 10 frames)

17 7

Peak Difference 20 6
Peak Difference Adaptive
(Every 10 frames)

15 5



Algorithm API: As a side benefit of integrating multiple 
tracking algorithms we have developed a modular API 
that allows researchers to integrate their own tracking 
algorithms into the testbed. Three basic functions need to 
be provided to integrate a new algorithm into the testbed:

TrackerInit (image, box, mask) –invoked to initialize a 
new object track.   Arguments are the initial image frame, 
initial bounding box, and initial object bitmap.
TrackerNextFrame (image, &box, &TrackResult) –
track target into the next frame, and return the tracking 
result.  Input arguments are the next image frame and a 
predicted bounding box of where the object will be (see 
the motion prediction discussion to follow).  Outputs are 
the new bounding box and a structure containing object 
bitmap, tracking confidence score, and an occlusion 
detection flag (for algorithms that can compute one).
TrackerCleanup() –End of experiment. Release allocated 
memory. 

We encourage researchers to make their code available to 
others by integrating it into the testbed for release in later 
versions.

2.2 Motion Prediction Module

Two common cases of failure in airborne target tracking 
are:  1) sudden, large camera motions (for example, a 
panning or zooming motion); and 2) occlusion of the 
tracked object behind buildings or foliage. The tracking 
testbed includes a motion estimation and prediction 
module that addresses both of these issues by estimating 
and compensating for apparent motion of both the scene 
background and tracked foreground object. Parametric 
estimates of background scene displacements provide 
coarse predictions of where the object should be in the 
current frame based purely on the effects of camera 
motion. Foreground motion modeling fine tunes these 
estimates by adding a further displacement due to
predicted object motion. Background motion estimation 
and foreground object motion prediction are coupled.  In 
fact, we hypothesize that a constant velocity model is 
adequate for modeling object motion once the background 
camera motion has been compensated for.  This 
hypothesis is validated later in this section.

The motion prediction module allows tracking through 
temporary, total occlusions.   An occlusion event is 
flagged when tracking confidence falls below some 
percentage of the expected tracking confidence score. 
During occlusion, a model of the object motion is 
extrapolated forward in time until the object reappears 
and is reacquired (Figure 2).  

Figure 2.  The testbed contains a motion prediction module that
helps track objects through occlusion.  The prediction method 
assumes object motion has constant velocity after compensating 
for affine motion of the scene background.  

We estimate background camera motion by fitting a 
global parametric motion model to sparse optic flow. The 
Kanade-Lucas-Tomasi (KLT) feature tracker [2] is used 
to match corner features between adjacent pairs of video 
frames to obtain a sparse estimate of the optic flow field. 
For each corner feature, the method solves for a subpixel 
translational displacement vector that minimizes the sum 
of squared intensity differences between an image patch
centered at the corner and a patch in the subsequent frame 
centered at the estimated translated position. 

A global, six parameter affine motion model is fit to the 
observed displacement vectors to approximate the flow 
field induced by camera motion and a rigid ground plane. 
Higher order motion models such as planar projective 
could be used, however the affine model has been 
adequate in our experiments due to the large sensor 
standoff distance, narrow field of view, and nearly planar 
ground structure in these aerial sequences. We use a 
Random Sample Consensus (RANSAC) procedure [7] to 
robustly estimate affine parameters from the observed 
displacement vectors. The method repeatedly selects a 
random set of three point correspondences, solves for the 
affine transformation induced by them, and counts the 
number of other correspondences that can be explained by 
the resulting transformation. The largest such set of 
correspondences is chosen to represent the statistical 
“inliers”, and a least-squares solution applied to these 
inliers forms the final global affine estimate. The benefit 
of using the robust RANSAC procedure is that the final 
least squares estimate is not contaminated by incorrect
displacement vectors, points on moving vehicles, or scene 
points with large parallax.



It is important to note that we do not do explicit image 
warping to produce stabilized image sequences.  Instead, 
we compensate for camera motion by predicting apparent 
optic flow within an image region local to the object, so 
that it can be added to the vector that predicts where the 
object will go based on the constant velocity assumption.  
This simple linear algebra computation is far less
expensive than image stabilization via warping.

It is also important to note that the motion prediction 
mechanism presented here is an optional feature of the 
tracking testbed.  The user can turn off motion prediction 
completely, or can substitute another approach by 
implementing it within their own algorithm. 

Validating Affine-Compensated Constant Velocity

The motion prediction module assumes the object travels 
with constant velocity after first compensating for affine 
background motion.  To validate this assumption, we 
tested a simplified three-frame computation method (the 
actual motion prediction module in the testbed uses a 
sliding window of N previous object centroids to more 
robustly estimate current velocity).

We model the observed displacement of a target from one 
video frame to the next using two terms (see Figure 3). 
The first term, d_camera, models the displacement that 
would have been observed if the object had been 
stationary, or in other words, only due to motion of the 
camera. Camera motion includes proper movement such 
as forward translation of the airplane or rotation of the 
camera ball, and apparent motion due to changes in focal 
length during a zoom operation. 

Figure 3: Decomposition of observed displacement of a target 
between two video frames into terms based only on motion of 
the camera and motion of the target.

The second term, d_target, models the displacement that 
would have been observed if the camera had been 
stationary, and thus assumes the displacement was due
solely to motion of the object. To estimate the object-only 
displacement term we assume a constant velocity model, 
meaning the vehicle is traveling in a “steady-state”.  Of 
course, in reality the vehicle may be speeding up or 

slowing down, but as long as the change in acceleration is 
slow a “constant velocity + noise” model should be 
sufficient.

Figure 4 illustrates the terms involved in predicting where 
an object should be in the current frame based on a 
constant velocity model, given that we must first adjust 
for camera motion before we can compute the vehicle’s 
velocity. The formula to predict the location Pt of the 
object in the current frame t, given its previously observed 
positions Pt-1 and Pt-2 in the last two frames, is 
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Figure 4: Prediction of current location of target, Pt, based on 
its previous two observed positions, and computed inter-frame 
displacements due to camera motion.

Once the object velocity is computed between two frames, 
prediction of object location based on constant velocity 
can be extrapolated into subsequent frames without 
further observation of the object position, as long as 
camera motion is estimated between each pair of frames. 
This multi-frame “blind” prediction of target location is 
important, since it forms the basis of tracking through 
occlusion. 

We have used a large set of hand-labeled aerial tracking 
sequences to validate this motion prediction method. In 
these sequences, objects in every 10th frame have been 
outlined by polygons.  The sequences include a variety of 
object resolutions (lens zoom factors), camera motions, 
and relative object motions.  We test the predicted 
location of an object polygon centroid in frame t given its 
known location in frames t-2 and t-1 and estimates of 
inter-frame affine camera motions computed from sparse 
optic flow. [Since ground truth is only available for every 
10th frame in the sequences, frame t-1 is actually 10 
frames in the past, and t-2 is 20 frames in the past. Thus, 
the test is more demanding than the frame-to-frame 
prediction that occurs in the on-line tracking system.] 

Figure 5 plots two-frame displacements of 13,852 target 
centroids with no motion compensation (left plot), after 



compensation for affine camera motion only (middle), 
and after compensation for both camera motion and 
constant velocity object motion components (right). Since 
displacement scales with respect to zoom factor, we use a 
simple method for normalizing across zoom (vehicle size) 
by measuring centroid displacement in pixels divided by 
the square root of the number of pixels in the object image 
polygon. When an object is relatively compact, as is the 
case with vehicles, displacements within its borders map 
roughly to a circle of radius 1, which is overlaid on the 
plots. For tracking methods based on gradient descent
(e.g. Lucas-Kanade method and Mean-shift), we want the 
observed displacements to fall within this circle so that 
the predicted object polygon in the next frame overlaps 
well with the true object polygon. Points outside of radius 
1 represent cases where a gradient descent tracker may
fail, and points outside of radius 2 represent cases that are 
almost guaranteed to fail, since the predicted object
polygon does not overlap the new object polygon at all.

Figure 5: Validation of camera motion compensation and 
constant velocity location prediction. Units in the plots are 
centroid displacement / sqrt(pixels on target). Each plot is 
overlaid with a circle of unit radius.  These plots result from 
13,852 motion prediction tests.

As we see from Figure 5, without motion compensation 
there are many cases of interframe displacements that are 
large enough to cause tracking failure. In contrast, 
compensating for affine camera motion brings the vast 
majority of the location predictions within the circle of 
radius 1, thereby bounding the displacement to a degree 
where success is likely. We see in the far right plot the 
effects of applying both camera motion AND constant 
velocity target motion prediction.   Although a few more 
points fall outside the circle of radius 1, the clustering of 
compensated points around the origin is actually tighter 
(major axis standard deviation of 0.13 as opposed to 0.20 
using only camera motion compensation, and 0.83 with 
no compensation at all).  The results clearly validate that
affine background motion compensation followed by 
constant velocity motion prediction is an adequate motion 
prediction model for airborne tracking, and that it can 
greatly increase the likelihood of success of simple 
gradient descent target search methods.

3. Evaluation Web Page Development

We have developed an on-line, tracking evaluation web 
site to facilitate third-party self-evaluation of tracking 
systems on airborne video data.  The inspiration for the 
site is the successful Middlebury stereo evaluation web 
page [8].  Our evaluation site provides: 1) ground-truth
datasets for tracking experiments; 2) the tracking testbed 
software; 3) a mechanism for uploading and automatically 
scoring tracking results; and 4) a table showing the user’s 
score ranked in relation to other algorithm submissions.
See Figure 6.

Figure 6.  Framework for development of a tracking evaluation 
web page.  PHP-enabled web scripts interface with a My-SQL 
database on a dedicated server, yielding great flexibility in 
designing and implementing web page functionality.

The basic website framework is built on PHP web scripts 
on a dedicated Apache server.  PHP is an open source, 
server-side, HTML-embedded scripting language used to 
create dynamic Web pages. PHP can perform callouts to C 
programs, giving us great flexibility in designing the web 
page functionality.  However, the primary strength of PHP 
lies in its compatibility with many types of databases.  In 
our evaluation setup, PHP interfaces with a My-SQL 
database.  We determined that it would be necessary to 
have an underlying database to manage the large volume 
of test datasets and uploaded results submitted by the web 
page users.  Furthermore, the database enables dynamic 
manipulation and tabulation of evaluation scores.

The evaluation website is account-based.  Each time a 
user submits results for a different algorithm, they set up 
an account that maintains its own set of evaluation scores 
on the web server’s MySQL database.  To improve 
security for the website, we prevent automated account 
registrations by using visual captcha’s – the user must 
read a distorted picture representing a string of letters and 
numerals that must be entered for verification.  We also 
limit the size of file uploads to prevent malicious usage.

3.1 Evaluation Datasets

The aerial tracking datasets are a subset of public release 
data collected under the DARPA VIVID program.  In 
selecting evaluation video clips, the goal has been to offer 



a representative sample of object resolution, contrast, 
pose, and degree of occlusion, in both visible and thermal
IR imagery.  A sample sequence thumbnail page is shown 
in Figure 7.

Figure 7.  A sample dataset thumbnail page.   From this page, 
the user can download the dataset, which consists  of a zipped 
sequence of jpeg image frames. 

The original video clips are avi movie files encoded via 
motion-jpeg.  To remove any potential variability due to 
use of different decoders, we distribute the video frames 
as sequences of numbered jpeg image files. We use a 
program called Videomach to “explode” avi files into 
color image frames, postprocess the decoded frames with 
a de-interlace filter that replaces every odd scan line with 
new values bilinearly interpolated from neighboring even 
scan lines, and store the results as a numbered sequence 
of images in jpeg file format.  The de-interlace filter 
removes even-odd scan-line artifacts due to sensor 
interlace, allowing more accurate delineation of the 
boundaries and bounding boxes of fast moving objects.

3.2 Baseline Algorithms

Distribution of a set of baseline algorithms into the public 
domain is accomplished through the open source tracking 
testbed described in the previous section and available for 
download from the web page.  Making baseline code 

available is valuable because it encourages and facilitates 
scientific repeatability.  Additionally, it reduces the cost 
of entry into the evaluation “competition” since people 
can start with one of the baseline algorithms and tweak its
modules to improve performance. 

3.3 Evaluation Metrics

The automated scoring algorithm is written in C++.  It 
uses ground truth files as a benchmark against which to 
compare user-generated tracking results.  Two types of 
metrics are used: tracking success rate and  shape 
accuracy of computed foreground masks (which can be 
reported just as a bounding box by algorithms that do not 
attempt to do shape segmentation).  Specifically, the 
evaluation algorithm uses five criteria to rate and rank 
submitted results:
1) percentage of dataset tracked:  this is the number of 
frames in which the user tracked the object before losing 
it, divided by the total number of frames.  The track is 
considered to be lost if the bounding box does not overlap 
the ground truth bounding box at all.  The first such 
occurrence terminates the evaluation.  This implies that 
we do not allow the user’s tracker to reacquire the target 
after tracking failure.
2) average overlap between bounding boxes: this is the 
percentage of overlap between the user's bounding box 
and the bounding box identified by ground truth files.  
This is only computed over the portion of the dataset 
reported in the percentage score above.
3) average overlap between bitmaps within overlapping 
bounding box area.  This is computed in the area of 
intersection between the user bounding box and the 
ground-truth bounding box.  This criterion measures the 
accuracy/similarity of the bitmap (binary foreground 
mask) specified by the user’s algorithm to the ground 
truth object bitmap.
4) average distance transform focused on ground-truth 
object.  As motivated in the next section, we choose the 
chamfer distance as a measure of distance between two 
binary bitmaps.  This version of the score uses the ground 
truth object bitmap to compute the distance transform 
against which the user object bitmap is scored.
5) average distance transform focused on user-identified 
object.  Same as above, but the user-supplied bitmap is 
now used to compute the distance transform against 
which the ground truth bitmap is scored.  We need both 
versions since the chamfer distance is not symmetric.  
Alternatively, we could compute the average of the two 
directed chamfer distances to generate a symmetric error.

After scoring, a table showing the user’s ranking with 
respect to other submitted algorithms is automatically 
generated and displayed (Figure 8).



Figure 8.  Upon uploading a set of results to the web site, an 
automated scoring mechanism is invoked that compares the 
user’s results to a ground truth dataset for that sequence.  The 
algorithm score is displayed in a table in relation to the results 
achieved by other submitted algorithms.

3.4 More on Metrics – Position and Shape

We want to have a metric describing how well the tracker 
has found the tracked object in the current frame.  If we 
represent the object as a point (centroid) location, a 
natural measure for goodness of fit is distance to the 
ground truth location.  However, a tracking algorithm 
should know not just the object location but also the 
spatial extent of the object in the image.   It is common to 
display the extent of an object hypothesis with a bounding 
box overlaid on the image.  It is therefore natural to 
consider percentage of overlap of bounding boxes as a 
joint measure on similarity of location and extent.  
Bounding boxes are also fairly easy to ground truth in the 
image.  However, Figure 9 shows that overlap of 
bounding boxes can be a poor description of similarity for 
objects that are not oriented along scan lines of the image.  
For the pathological example shown on the left of the 
figure, two hypotheses with very different shapes have 
identical bounding boxes and, incidentally, identical 
centroid locations as well.

We propose to represent extent and shape of an object by 
a bounding box and a binary bitmap, and to measure 
accuracy of an object hypothesis by its similarity to a 
ground truth object bitmap.  Several measures have been 
devised in the past to compute similarity of segmented 
shapes.  If a bitmap mask is treated as a binary 

classification of pixels into foreground and background 
classes, one similarity score between hypothesis and 
ground truth masks is TP/(TP+FP+FN) where TP is the 
number of correctly labeled foreground pixels, FP is the 
number of pixels incorrectly labeled as foreground, and 
FN is the number of pixels incorrectly labeled as 
background.  This score ranges from 0 when there is no 
overlap of hypothesis and ground truth, to 1 when they 
are exactly the same.  The trouble with this score is the 
inability to make fine distinctions between bitmaps that 
don’t overlap: a hypothesis bitmap that does not overlap 
the ground truth but is nevertheless nearby should not be 
penalized as much as a bitmap that is located far away
(Figure 9). [Since we terminate a tracking experiment 
when bounding boxes no longer overlap, ability to
measure this distance is moot.  However, the drawback 
described is still valid.]

The evaluation web page scoring mechanism uses the 
chamfer distance to jointly measure similarity of bitmap 
positions and shapes.  Chamfer distance is the average of 
the minimum distances from foreground pixels in one 
bitmap to foreground pixels in another. Chamfer distance 
can be computed efficiently based on algorithms for 
computing distance transforms.   Note that chamfer 
distance behaves sanely on the two pathological cases we 
have shown in Figure 9.  The chamfer distance for two 
objects that completely overlap is 0.  The chamfer 
distance for two objects that do not overlap at all is 
proportional to the distance between them.  In cases of 
partial overlap the score quantifies the trade-off between 
position and shape accuracy.

Figure9. Pathologies of some simple hypothesis similarity 
measures.  Left) the green object is not very similar to the blue 
object, but their centroids coincide and their bounding boxes 
overlap perfectly.  Right) cases a and b show two hypotheses 
that do not overlap, and thus would both score 0 using some 
similarity measures.  We claim situation a should have a higher 
score than situation b.  The proposed chamfer similarity 
measure behaves correctly in each of these examples

3.5 Generating Hand-labeled Data 

Any measure based on similarity of object bitmaps means 
that ground truth segmentation of the foreground object 
must be achieved.  This requires significantly more 
human effort than just selecting bounding boxes.  We 
have developed a simple Matlab ground truthing tool that 



allows the user to interactively draw a polygonal outline 
around the object, using the mouse.  The process is 
illustrated in Figure 10.  When a frame is displayed, the 
user initially selects a region of interest containing the 
object.  A zoomed in version is then displayed and the 
user proceeds to draw a polygonal boundary around the 
object.  A simple sequence of left and right mouse clicks 
allows the user to add or remove points (based on the 
Matlab command “roipoly”), until they are satisfied with 
the object contour.  The next frame to be labeled is then 
displayed.

Figure 10. Overview of our current process for hand-labeling 
ground truth object masks for tracking evaluation: 1) user 
selects a region of interest that contains the object, 2) a zoomed 
in image is displayed, and the user draws a polygonal boundary 
around the object using a sequence of mouse clicks.  The 
resulting contour is then converted into a bounding box and a
binary mask denoting the shape and location of the object.

Figure 11 shows some samples of ground truth frames.  
The interactive outlining tool allows the user to quickly 
label a variety of cases, including unoccluded object 
boundaries, partial occlusions, complete occlusions 
(which is easy), and even cases where the object is split 
into multiple pieces by thin occluding objects.  We are 
currently able to ground truth roughly 5 frames per 
minute, and currently we ground truth every 10th frame in 
a sequence.  
  

Figure 11. Some sample ground truth labelings, ranging from 
unoccluded contours, partial occlusion, complete occlusion, 
and breaking into multiple pieces due to thin occluding objects. 

4. Conclusion

We have developed an open source tracking testbed and 
evaluation web site to encourage third-party 
experimentation and evaluation of tracking algorithms. 
By making these resources available we seek to make it 
easier for the tracking research community to compare 
performance of different algorithms on the same data. We 
also hope that researchers will contribute new algorithms 
to the growing library of baseline algorithms distributed 
within the testbed system. 

Although the tracking testbed can be used on any video 
sequences, the current datasets on the evaluation page are 
focused on ground vehicle tracking from airborne video 
Our development effort was sponsored by a project for 
which these are the relevant datasets to consider. These 
sequences are also interesting in their own right due to 
the challenges of a constantly moving background. In the 
future we may add datasets of other types, such as static 
camera surveillance scenarios, and would welcome being
a mirror site for the PETS benchmark datasets.  
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