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Abstract – Making the transition between digital video imagery 
acquired by a focal plane array and imagery useful to a human 
operator is not a simple process.  The focal plane array “sees” the 
world in a fundamentally different way than the human eye.  
Gamma correction has been historically used to help bridge the 
gap.  The gamma correction process is a non-linear mapping of 
intensity from input to output where the parameter gamma can 
be adjusted to improve the imagery’s visual appeal.  In analog 
video systems, gamma correction is performed with analog 
circuitry and is adjusted manually.  With a digital video stream, 
gamma correction can be provided using mathematical 
operations in a digital circuit.  In addition to manual control, 
gamma correction can also be automatically adjusted to 
compensate for changes in the scene. 
 
We are interested in applying automatic gamma correction in 
systems such as night vision goggles where both low latency and 
power efficiency are important design parameters.  We present 
our results in developing an automatic gamma correction 
algorithm to meet these requirements.  The algorithm is 
comprised of two parts, determination of the desired value for 
gamma and the application of the correction.  The calculation of 
the gamma value update is performed based upon statistical 
metrics of the imagery’s intensity.  HDL code implementing the 
measurement of the statistical metrics has been developed and 
tested in hardware.  Both the computation of a gamma update 
and the application of the gamma correction were simplified to 
basic arithmetic operations and two specialized functions, 
logarithm and exponentiation of a constant base by a variable 
exponent. 
 
We present approximation methods for both specialized 
functions simplifying their implementation into basic arithmetic 
operations.  The hardware implementations of the 
approximations allow the above requirements to be met.  We 
evaluate the accuracy of the approximations as compared to full 
resolution double-precision floating point mathematical 
operations.  We present the final results for visual judging to 
evaluate the impact of the approximations. 
 
 

I. BACKGROUND 

A. Problem Statement 
In addition to its other uses, gamma correction is an effective 
tool for manipulating the histogram of an image that is either 
over or under exposed, but not fully compromised with 
saturation.  While it is available as a tool in most image 
processing software, the functions used to implement gamma 

correction have relatively complex implementations in 
hardware.  We present an implementation that approximates 
gamma correction with a satisfactory level of visual quality, 
but with a tractable hardware implementation.  Our design is 
meant to be capable of providing real-time, pixel-serial 
gamma correction to imagery generated by a focal plane array 
with an active area of 1600x1200 pixels and a pixel clock rate 
in excess of 150 MHz utilizing commercially available FPGA 
hardware. 

B. Gamma Correction 
Gamma correction is an intensity transformation that takes the 
form of a generalized power law with equivalent range and 
domain.  Letting 𝑥 ∈ [0,1] represent the intensity domain and 𝑦 represent the intensity range, a gamma correction transform 
is described by: 

 y = xஓ (1) 

where γ>0.   For gamma γ<1, gamma compression occurs, 
moving the intensity histogram to the right. For gamma γ>1, 
gamma expansion occurs, moving the histogram to the left.  
Figure 1 shows a normal probability distribution with both a 
gamma compressed and gamma expanded version of the 
distribution.   

 
Figure 1 – Gamma correction applied to probability distributions 

 
Figure 2 shows the visual impact of changing gamma by 
presenting the same image with three different values of 
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gamma [3].  We see the general progression of overall 
lightening of the image as gamma increases.  In this sequence, 
the most pronounced change can be observed between the 
image with γ=1 and the image with γ=2.  The whole 
underwater ridge is ill defined and shadowy with γ=1, 
however, with γ=2, most of its features become sharply 
defined.  A small prominence at the left end of the ridge is not 
visible with γ=1 while its left edge becomes well defined with 
γ=2.  Note that both the left and right edges of the prominence 
are well defined with γ=4, but, this is at the expense of the 
bulk of the image looking overexposed. 
 

 

 

 
Figure 2 – Effects of gamma correction on grayscale imagery 

 

II. DESIGN 

A. Modifications for Hardware Implementation 
For real-time applications with actual hardware, it is useful to 
consider a slightly modified version of the gamma correction 
transformation. Letting 𝑥 ∈ [0, ∆𝑥]  represent the intensity 
domain and 𝑦 ∈ [0, ∆𝑦]  represent the intensity range, an 

equivalent form of the gamma correction transform is 
described by: 

 y = ∆y ቀ ୶∆୶ቁஓ
 (2) 

The introduction of the terms ∆𝑥 and ∆𝑦 allow us to also use 
the transformation to adjust the gray scale domain of the 
imagery from that of the focal plane array to the range of the 
display.  
 
In order to automate the process of gamma correction, we 
need to define a metric, derived from the imagery, allowing 
the automatic determination of gamma for an image.  We have 
chosen to utilize imagery statistics collected on each frame 
although they are not the only possible choice.  When utilizing 
imagery statistics, we must introduce the real-time 
compromise that we either introduce a frame of latency to 
allow application of the actual imagery statistics or we utilize 
statistics from the previous frame to process the current frame.  
Our implementation uses the latter choice; however, it does 
not impact the mathematical development of the module. 
 
Our imagery metric is used to determine a set point for the 
domain, denoted 𝑥௦ , that is mapped to a pre-determined set 
point for the range, 𝑦௦.  The set point pair (𝑥௦, 𝑦௦) can then be 
used to compute an appropriate value of gamma for the frame 
as: 

 γ = ୪୭ቀ౯౩∆౯ቁ୪୭ቀ౮౩∆౮ቁ = ୪୭(୷౩)ି୪୭(∆୷)୪୭(୶౩)ି୪୭(∆୶). (3) 

The computation of gamma needs to occur only once per 
frame. 
 
In examining how to actually implement the gamma 
correction transform given in (2), it became clear that 
implementing a function that computed the result of a variable 
base raised to a variable exponent was not feasible within our 
hardware limitations.  To overcome this problem, we found it 
useful to rewrite (2) in the form: 

 y = ∆y2ஓ(୪୭మ(୶౩)ି୪୭మ(∆୶)). (4) 

Given this representation, the implementation problem is 
simplified to computing a variable exponentiation of base two 
and computation of log base two, both with variable argument.  
While different bases would provide identical results, we 
selected base two due to hardware considerations.  Both of 
these calculations have tractable hardware implementations. 
 

B. Hardware Computation of 𝒍𝒐𝒈𝟐(𝒔)  
For our problem, the general computation of logଶ(𝑠) is done 
over a limited, but potentially large range: 

 s ∈ [1, 2୮ାଵ) (5) 

where 𝑝  is an integer.  We handle 𝑠 = 0  as a special case.  
Imaging systems typically require 10 ≥ 𝑝 ≥ 16; that is, we 
need to find the logarithm over 10 to 16 octaves.  We can 
express the logarithm argument as: 



 s = q2୮ (6) 

where 𝑞 is a positive real number and where we can find: 

 p = floor(logଶ(s)) (7) 

and 

 q = ୱଶ౦ , q ∈ [1, 2) (8) 

 
In hardware, finding 𝑝 can be easily accomplished by finding 
the largest nonzero bit in 𝑠.   Finding 𝑞  is accomplished by 
simple right shifting of 𝑠.  We can now find:  

 logଶ(s) = p + logଶ(q) (9) 

where the logଶ(𝑞)  term can be approximated on its small 
range using a function with an acceptable hardware 
implementation. 
 

C. Hardware Approximation of 𝒍𝒐𝒈𝟐(𝒒) 
There are many well known ways to approximate a logarithm 
over a closed interval.  After evaluation of several methods, 
we chose direct fitting of a fixed order polynomial to the 
function over the desired interval.  This provided a significant 
improvement in accuracy over a comparable order Taylor 
series approximation.  It was also as accurate as a comparable 
order Padé approximation [1], but does not require a high-
precision arbitrary argument division of the Padé.  Arbitrary 
argument division was avoided because of its significant 
hardware requirements.   
 
Based on a propagation of error analysis, we chose to 
implement the approximation to obtain precision at eight 
places to the right of the binary point.  With this requirement, 
we found that a directly fitted third-order polynomial with 16-
bit signed coefficients was sufficient.  Using MATLAB™ to 
generate an initial direct fit of the logarithm with floating 
point coefficients, we then truncated to scaled integer 
coefficients using a simple iterative search to find the 
minimum error [2].  The approximation is given as: 

 
logଶ(q)≈ ቀ൫(1261q − 8435)q + 24666൯q − 17481ቁ 2ିଵଷ (10) 

where the equation is staged for three multiply accumulate 
(MAC) operations and the coefficients are shown as their 
decimal values.  The absolute error of the approximation is 
shown in Figure 3; it meets our precision requirements within 
an acceptable margin.  Because the logଶ(𝑞) approximation is 
additive in (9), the approximation error in logଶ(𝑠)  repeats 
every decade of 𝑝. 
 

D. Hardware Computation of 𝟐𝒔 
For our problem, the general computation of 2௦ is done over a 
limited but potentially large range: 

 s ∈ [p, 0) (11) 

where 𝑝 is a negative integer.  Our goggle systems typically 
produce −16 ≥ 𝑝.  We can express the exponent as: 

 s = p + q (12) 

where 𝑞 is a positive real number and where we can find: 

 p = floor(logଶ(s)) (13) 

and 

 q = s − p, q ∈ [0, 1) (14) 

 

 
Figure 3 – Error of the polynomial approximation of logଶ(q) 

 
In hardware, finding 𝑝 can be easily accomplished by finding 
the position of the largest nonzero bit in 𝑠 with respect to the 
binary point.  Likewise, finding 𝑞  is accomplished by 
subtraction.  We can now find:  

 2ୱ = 2୮ ∙ 2୯ (15) 

The operation of finding 2  on its small range is performed 
using an approximation function with an acceptable hardware 
implementation.  The multiplication of the result by 2 is then 
handled by simple bit shifting. 
 

E. Hardware Approximation of 𝟐𝒒 
After evaluation of several of the well known methods of 
approximating an exponentiation with constant base and 
variable exponential, we again chose direct fitting of a fixed 
order polynomial to the function over the desired interval.  
Again, the accuracy improvement over a comparable order 
Taylor series approximation was significant.   
 
Based on a propagation of error analysis, we chose to 
implement the approximation to obtain precision at eleven 
places to the right of the binary point.  With this requirement, 
we found that a direct fitted third-order polynomial with 16-bit 
unsigned coefficients was sufficient.  Using MATLAB™ to 
generate an initial direct fit of the logarithm with floating 
point coefficients, we then truncated to scaled integer 
coefficients using a simple iterative search to find the 
minimum error [2].  The approximation is given as: 
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2୯≈ ቀ൫(5179q + 14689)q + 45668൯q + 65524ቁ 2ିଵ (16) 

where the equation is staged for three MAC operations and the 
coefficients are shown as their decimal values.  The absolute 
error of the approximation is shown in Figure 4; it meets our 
precision requirements with some margin.  Because the 2 
approximation is multiplicative in (15), the approximation 
error in 2௦ changes with the magnitude of 𝑝 and is presented 
in Figure 5.   
 

 
Figure 4 – Error of the polynomial approximation of 2୯ 

 

 
Figure 5 – Error of the polynomial approximation of 2ୱ 

 

III. RESULTS 
We tested a MATLAB implementation of our approximate 
gamma correction transform versus a full floating point 
implementation using a thermal video sequence.  The video 
was captured using a Video IR™ long wave infrared camera, 
sensitive between 8 and 14 µm.  The camera utilizes an active 
array area of 640x480 and an intensity depth of 14-bits.  
Figure 6 below shows a typical source frame, top left, a linear 
correction, top right, the floating point exact gamma 
correction, bottom left, and the approximate gamma 
correction, bottom right.  The gamma correction shown here 
represents an extreme for the error conditions of the 
approximation; it was not chosen for visual improvement.   

 
Comparison of the approximation to the floating point result 
for the duration of the video shows that the vast majority of 
the pixel intensities matched within 1-bit of round-off.  
However, we also found anomalous intensities with tens of 
bits difference between exact and approximation.  We are 
investigating the source of these errors as they are not 
consistent with our error prediction.   
 

Results
1 frame from the quad video sequence
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Figure 6 – Frame from video sequence  

 

IV. ANALYSIS 
Hardware Implementation Resources and Latency 
Because our gamma correction is intended to support an actual 
system under development, our solution took several 
requirements into consideration: 

1. Execute as a pixel-serial operation 
2. Latency on the order of tens of pixel clock cycles 
3. Simple implementation for FPGAs, keeping 

mathematical complexity to MAC and less 
4. Keep power and resource requirements to a minimum 
5. Work at pixel clock rates in excess of 165 MHz 

We felt that meeting the second and third requirements would 
be the key to meeting requirements four and five.  At this 
phase of the project, the focus is primarily on the first three 
requirements. 
 
Tables 1 and 2 present the expected major hardware 
requirements for the implementation of logଶ(𝑠)  and 2௦ and 
provide their total latency.  Tables 3 and 4 present similar 
information for the overall modules used to compute the per 
frame gamma and the per pixel serial gamma correction.  They 
both include appropriate counts for each instantiation of logଶ(𝑠) and 2௦.  Overall, the expected latency of all modules 
is satisfactory.  Likewise, the hardware requirements represent 
a reasonable portion of the overall available resources. 
 
  

0 0.2 0.4 0.6 0.8 1
0

1

x 10-4

Input range, q

A
bs

ol
ut

e 
E

rro
r

Error for 2 q.

 45  40  35  30  25  20  15  10  5 0

10
 20

10
 15

10
 10

10
 5

Input range, s

Ab
so

lu
te

 E
rr

or

Error for 2 s.



 
Table 1: Hardware requirements for logଶ(𝑠) 

Hardware Count 
shifter 1 
adder 2 
multiplier 0 
MAC 3 
divider 0 
  
Latency in Pixel Clock cycles 21 

 
Table 2: Hardware requirements for2௦ 

Hardware Count 
shifter 1 
adder 1 
multiplier 1 
MAC 3 
divider 0 
  
Latency in Pixel Clock cycles 20 

 
Table 3: Hardware requirements gamma computation 

Hardware Count 
shifter 4 
adder 10 
multiplier 0 
MAC 12 
divider 1 
  
Latency in Pixel Clock cycles 30 

 
Table 4: Hardware requirements for gamma correction 

Hardware Count 
shifter 3 
adder 5 
multiplier 3 
MAC 9 
divider 0 
  
Latency in Pixel Clock cycles 50 
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