
Towards Real-time Hardware Gamma Correction

for Dynamic Contrast Enhancement

Jesse Scott, Ph.D. Candidate
Integrated Design Services, College of Engineering,

Pennsylvania State University
University Park, PA

jus121@engr.psu.edu

Michael Pusateri, Ph. D. and Director
Integrated Design Services, College of Engineering,

Pennsylvania State University
University Park, PA

mpusateri@engr.psu.edu

Abstract – Making the transition between digital video imagery
acquired by a focal plane array and imagery useful to a human
operator is not a simple process. The focal plane array “sees” the
world in a fundamentally different way than the human eye.
Gamma correction has been historically used to help bridge the
gap. The gamma correction process is a non-linear mapping of
intensity from input to output where the parameter gamma can
be adjusted to improve the imagery’s visual appeal. In analog
video systems, gamma correction is performed with analog
circuitry and is adjusted manually. With a digital video stream,
gamma correction can be provided using mathematical
operations in a digital circuit. In addition to manual control,
gamma correction can also be automatically adjusted to
compensate for changes in the scene.

We are interested in applying automatic gamma correction in
systems such as night vision goggles where both low latency and
power efficiency are important design parameters. We present
our results in developing an automatic gamma correction
algorithm to meet these requirements. The algorithm is
comprised of two parts, determination of the desired value for
gamma and the application of the correction. The calculation of
the gamma value update is performed based upon statistical
metrics of the imagery’s intensity. HDL code implementing the
measurement of the statistical metrics has been developed and
tested in hardware. Both the computation of a gamma update
and the application of the gamma correction were simplified to
basic arithmetic operations and two specialized functions,
logarithm and exponentiation of a constant base by a variable
exponent.

We present approximation methods for both specialized
functions simplifying their implementation into basic arithmetic
operations. The hardware implementations of the
approximations allow the above requirements to be met. We
evaluate the accuracy of the approximations as compared to full
resolution double-precision floating point mathematical
operations. We present the final results for visual judging to
evaluate the impact of the approximations.

I. BACKGROUND

A. Problem Statement
In addition to its other uses, gamma correction is an effective
tool for manipulating the histogram of an image that is either
over or under exposed, but not fully compromised with
saturation. While it is available as a tool in most image
processing software, the functions used to implement gamma

correction have relatively complex implementations in
hardware. We present an implementation that approximates
gamma correction with a satisfactory level of visual quality,
but with a tractable hardware implementation. Our design is
meant to be capable of providing real-time, pixel-serial
gamma correction to imagery generated by a focal plane array
with an active area of 1600x1200 pixels and a pixel clock rate
in excess of 150 MHz utilizing commercially available FPGA
hardware.

B. Gamma Correction
Gamma correction is an intensity transformation that takes the
form of a generalized power law with equivalent range and
domain. Letting 𝑥 ∈ [0,1] represent the intensity domain and 𝑦 represent the intensity range, a gamma correction transform
is described by:

 y = xஓ (1)

where γ>0. For gamma γ<1, gamma compression occurs,
moving the intensity histogram to the right. For gamma γ>1,
gamma expansion occurs, moving the histogram to the left.
Figure 1 shows a normal probability distribution with both a
gamma compressed and gamma expanded version of the
distribution.

Figure 1 – Gamma correction applied to probability distributions

Figure 2 shows the visual impact of changing gamma by
presenting the same image with three different values of

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Normalized Pixel Intensity

In
te

ns
ity

 P
ro

ba
bi

lit
y

 corrections of a normal distribution.

 = 1
 = 4
 = 0.25

gamma [3]. We see the general progression of overall
lightening of the image as gamma increases. In this sequence,
the most pronounced change can be observed between the
image with γ=1 and the image with γ=2. The whole
underwater ridge is ill defined and shadowy with γ=1,
however, with γ=2, most of its features become sharply
defined. A small prominence at the left end of the ridge is not
visible with γ=1 while its left edge becomes well defined with
γ=2. Note that both the left and right edges of the prominence
are well defined with γ=4, but, this is at the expense of the
bulk of the image looking overexposed.

Figure 2 – Effects of gamma correction on grayscale imagery

II. DESIGN

A. Modifications for Hardware Implementation
For real-time applications with actual hardware, it is useful to
consider a slightly modified version of the gamma correction
transformation. Letting 𝑥 ∈ [0, ∆𝑥] represent the intensity
domain and 𝑦 ∈ [0, ∆𝑦] represent the intensity range, an

equivalent form of the gamma correction transform is
described by:

 y = ∆y ቀ ୶∆୶ቁஓ
 (2)

The introduction of the terms ∆𝑥 and ∆𝑦 allow us to also use
the transformation to adjust the gray scale domain of the
imagery from that of the focal plane array to the range of the
display.

In order to automate the process of gamma correction, we
need to define a metric, derived from the imagery, allowing
the automatic determination of gamma for an image. We have
chosen to utilize imagery statistics collected on each frame
although they are not the only possible choice. When utilizing
imagery statistics, we must introduce the real-time
compromise that we either introduce a frame of latency to
allow application of the actual imagery statistics or we utilize
statistics from the previous frame to process the current frame.
Our implementation uses the latter choice; however, it does
not impact the mathematical development of the module.

Our imagery metric is used to determine a set point for the
domain, denoted 𝑥௦ , that is mapped to a pre-determined set
point for the range, 𝑦௦. The set point pair (𝑥௦, 𝑦௦) can then be
used to compute an appropriate value of gamma for the frame
as:

 γ = ୪୭୥ቀ౯౩∆౯ቁ୪୭୥ቀ౮౩∆౮ቁ = ୪୭୥(୷౩)ି୪୭୥(∆୷)୪୭୥(୶౩)ି୪୭୥(∆୶). (3)

The computation of gamma needs to occur only once per
frame.

In examining how to actually implement the gamma
correction transform given in (2), it became clear that
implementing a function that computed the result of a variable
base raised to a variable exponent was not feasible within our
hardware limitations. To overcome this problem, we found it
useful to rewrite (2) in the form:

 y = ∆y2ஓ(୪୭୥మ(୶౩)ି୪୭୥మ(∆୶)). (4)

Given this representation, the implementation problem is
simplified to computing a variable exponentiation of base two
and computation of log base two, both with variable argument.
While different bases would provide identical results, we
selected base two due to hardware considerations. Both of
these calculations have tractable hardware implementations.

B. Hardware Computation of 𝒍𝒐𝒈𝟐(𝒔)
For our problem, the general computation of logଶ(𝑠) is done
over a limited, but potentially large range:

 s ∈ [1, 2୮ାଵ) (5)

where 𝑝 is an integer. We handle 𝑠 = 0 as a special case.
Imaging systems typically require 10 ≥ 𝑝 ≥ 16; that is, we
need to find the logarithm over 10 to 16 octaves. We can
express the logarithm argument as:

 s = q2୮ (6)

where 𝑞 is a positive real number and where we can find:

 p = floor(logଶ(s)) (7)

and

 q = ୱଶ౦ , q ∈ [1, 2) (8)

In hardware, finding 𝑝 can be easily accomplished by finding
the largest nonzero bit in 𝑠. Finding 𝑞 is accomplished by
simple right shifting of 𝑠. We can now find:

 logଶ(s) = p + logଶ(q) (9)

where the logଶ(𝑞) term can be approximated on its small
range using a function with an acceptable hardware
implementation.

C. Hardware Approximation of 𝒍𝒐𝒈𝟐(𝒒)
There are many well known ways to approximate a logarithm
over a closed interval. After evaluation of several methods,
we chose direct fitting of a fixed order polynomial to the
function over the desired interval. This provided a significant
improvement in accuracy over a comparable order Taylor
series approximation. It was also as accurate as a comparable
order Padé approximation [1], but does not require a high-
precision arbitrary argument division of the Padé. Arbitrary
argument division was avoided because of its significant
hardware requirements.

Based on a propagation of error analysis, we chose to
implement the approximation to obtain precision at eight
places to the right of the binary point. With this requirement,
we found that a directly fitted third-order polynomial with 16-
bit signed coefficients was sufficient. Using MATLAB™ to
generate an initial direct fit of the logarithm with floating
point coefficients, we then truncated to scaled integer
coefficients using a simple iterative search to find the
minimum error [2]. The approximation is given as:

logଶ(q)≈ ቀ൫(1261q − 8435)q + 24666൯q − 17481ቁ 2ିଵଷ (10)

where the equation is staged for three multiply accumulate
(MAC) operations and the coefficients are shown as their
decimal values. The absolute error of the approximation is
shown in Figure 3; it meets our precision requirements within
an acceptable margin. Because the logଶ(𝑞) approximation is
additive in (9), the approximation error in logଶ(𝑠) repeats
every decade of 𝑝.

D. Hardware Computation of 𝟐𝒔
For our problem, the general computation of 2௦ is done over a
limited but potentially large range:

 s ∈ [p, 0) (11)

where 𝑝 is a negative integer. Our goggle systems typically
produce −16 ≥ 𝑝. We can express the exponent as:

 s = p + q (12)

where 𝑞 is a positive real number and where we can find:

 p = floor(logଶ(s)) (13)

and

 q = s − p, q ∈ [0, 1) (14)

Figure 3 – Error of the polynomial approximation of logଶ(q)

In hardware, finding 𝑝 can be easily accomplished by finding
the position of the largest nonzero bit in 𝑠 with respect to the
binary point. Likewise, finding 𝑞 is accomplished by
subtraction. We can now find:

 2ୱ = 2୮ ∙ 2୯ (15)

The operation of finding 2௤ on its small range is performed
using an approximation function with an acceptable hardware
implementation. The multiplication of the result by 2௣ is then
handled by simple bit shifting.

E. Hardware Approximation of 𝟐𝒒
After evaluation of several of the well known methods of
approximating an exponentiation with constant base and
variable exponential, we again chose direct fitting of a fixed
order polynomial to the function over the desired interval.
Again, the accuracy improvement over a comparable order
Taylor series approximation was significant.

Based on a propagation of error analysis, we chose to
implement the approximation to obtain precision at eleven
places to the right of the binary point. With this requirement,
we found that a direct fitted third-order polynomial with 16-bit
unsigned coefficients was sufficient. Using MATLAB™ to
generate an initial direct fit of the logarithm with floating
point coefficients, we then truncated to scaled integer
coefficients using a simple iterative search to find the
minimum error [2]. The approximation is given as:

1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10-3

Input range, q

A
bs

ol
ut

e
E

rro
r

Error for log(q).

2୯≈ ቀ൫(5179q + 14689)q + 45668൯q + 65524ቁ 2ିଵ଺ (16)

where the equation is staged for three MAC operations and the
coefficients are shown as their decimal values. The absolute
error of the approximation is shown in Figure 4; it meets our
precision requirements with some margin. Because the 2௤
approximation is multiplicative in (15), the approximation
error in 2௦ changes with the magnitude of 𝑝 and is presented
in Figure 5.

Figure 4 – Error of the polynomial approximation of 2୯

Figure 5 – Error of the polynomial approximation of 2ୱ

III. RESULTS
We tested a MATLAB implementation of our approximate
gamma correction transform versus a full floating point
implementation using a thermal video sequence. The video
was captured using a Video IR™ long wave infrared camera,
sensitive between 8 and 14 µm. The camera utilizes an active
array area of 640x480 and an intensity depth of 14-bits.
Figure 6 below shows a typical source frame, top left, a linear
correction, top right, the floating point exact gamma
correction, bottom left, and the approximate gamma
correction, bottom right. The gamma correction shown here
represents an extreme for the error conditions of the
approximation; it was not chosen for visual improvement.

Comparison of the approximation to the floating point result
for the duration of the video shows that the vast majority of
the pixel intensities matched within 1-bit of round-off.
However, we also found anomalous intensities with tens of
bits difference between exact and approximation. We are
investigating the source of these errors as they are not
consistent with our error prediction.

Results
1 frame from the quad video sequence

1/7/2010 15

Figure 6 – Frame from video sequence

IV. ANALYSIS
Hardware Implementation Resources and Latency
Because our gamma correction is intended to support an actual
system under development, our solution took several
requirements into consideration:

1. Execute as a pixel-serial operation
2. Latency on the order of tens of pixel clock cycles
3. Simple implementation for FPGAs, keeping

mathematical complexity to MAC and less
4. Keep power and resource requirements to a minimum
5. Work at pixel clock rates in excess of 165 MHz

We felt that meeting the second and third requirements would
be the key to meeting requirements four and five. At this
phase of the project, the focus is primarily on the first three
requirements.

Tables 1 and 2 present the expected major hardware
requirements for the implementation of logଶ(𝑠) and 2௦ and
provide their total latency. Tables 3 and 4 present similar
information for the overall modules used to compute the per
frame gamma and the per pixel serial gamma correction. They
both include appropriate counts for each instantiation of logଶ(𝑠) and 2௦. Overall, the expected latency of all modules
is satisfactory. Likewise, the hardware requirements represent
a reasonable portion of the overall available resources.

0 0.2 0.4 0.6 0.8 1
0

1

x 10-4

Input range, q

A
bs

ol
ut

e
E

rro
r

Error for 2 q.

 45 40 35 30 25 20 15 10 5 0

10
 20

10
 15

10
 10

10
 5

Input range, s

Ab
so

lu
te

 E
rr

or

Error for 2 s.

Table 1: Hardware requirements for logଶ(𝑠)

Hardware Count
shifter 1
adder 2
multiplier 0
MAC 3
divider 0

Latency in Pixel Clock cycles 21

Table 2: Hardware requirements for2௦

Hardware Count
shifter 1
adder 1
multiplier 1
MAC 3
divider 0

Latency in Pixel Clock cycles 20

Table 3: Hardware requirements gamma computation

Hardware Count
shifter 4
adder 10
multiplier 0
MAC 12
divider 1

Latency in Pixel Clock cycles 30

Table 4: Hardware requirements for gamma correction

Hardware Count
shifter 3
adder 5
multiplier 3
MAC 9
divider 0

Latency in Pixel Clock cycles 50

REFERENCES
[1] M. Vajta, “Some Remarks on Padé-Approximations”, in Proc. of 3rd

TEMPUS INTCOM Symposium on Intelligent Systems in Control and
Measurement (edited by J.Vass and D.Fodor), pp.53-58, Sept. 2000.

[2] F. B. Hildebrand, Introduction to Numerical Analysis, 2nd Ed, Dover
Publications: June 1987.

[3] "Gamma Correction." Wikipedia, The Free Encyclopedia. Wikimedia
Foundation, Inc. 22 July 2004. Web. Aug. 2009.

