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T
he abundance of video foot-
age from surveillance sys-
tems in public spaces has 
become a driving force for 
advances in crowd image 

analysis. Of particular interest is crowd 
density analysis, where the goal is to 
detect and count people in a crowded 
scene. This is a challenging problem for 
a human observer when large numbers 
of constantly moving individuals are 
present. It is therefore desirable to have 
computational assets that can assist 
security personnel for real-time crowd 
monitoring. Automated analysis holds 
the potential to increase situational 
awareness for crowd control and public 
safety by providing real-time estimates 
of the number of people entering or 
exiting a venue.

This article presents a Bayesian 
approach that estimates the count 
and location of individuals in a video 
frame. Crowds are modeled by a 
marked point process (MPP) that cou-
ples a spatial stochastic process gov-
erning number and placement of 
individuals with a conditional mark 
process for selecting body size, shape, 
and orientation. Given a noisy, binary 
mask image where pixels are labeled 
foreground or  background,  the 
approach seeks a configuration of 
cutout shapes that simultaneously 
“covers” as many foreground pixels 
and as few background pixels as pos-
sible. We use reversible jump Markov 
chain Monte Carlo (RJMCMC) to 
search a combinatorial space of vary-
ing numbers and locations of people 
and to estimate the most probable 
configuration.

CROWDS AS A MARKED 
POINT PROCESS
Unlike Markov random field models that 
predefine a fixed number of nodes and 
links between the nodes, point processes 
offer a more flexible framework for deal-
ing with dynamic scenes where varying 
numbers of people are constantly mov-
ing in and out of view. An MPP [1] is a 
stochastic process that models a random 
number of objects randomly distributed 
in a bounded region with attributes 
(such as shape appearance) controlled 
by random parameters. Our notion of 
shape appearance is decomposed into 
two parameter sets: an extrinsic shape 
mapping and a set of intrinsic shape 
classes [2]. The extrinsic shape mapping 
determines the translation, rotation, and 
scaling of a centered shape model into 
image pixel coordinates. The intrinsic 
shape classes specify a library of differ-
ent reference shape prototypes (e.g., dif-
ferent body poses) that can be selected 
for mapping. 

Consider an object process O having 
probability 

 p 1o25q
i
p 1oi2

  5q
i
p 1 pi2p 1wi, hi, ui|pi 2p 1si 2 ,

 (1)

where p 1pi 2  is a homogeneous Poisson 
point process that governs the spatial 
distribution of people in the scene and 
p 1wi, hi, ui|pi 2  is a conditional mark 
process for extrinsic shapes, e.g., rect-
angles representing the shape and ori-
entation of a two-dimensional (2-D) 
bounding box, conditioned on spatial 
location. A Poisson process is chosen 
for its complete spatial randomness 
property [1] that implies independence 
between disjoint regions within the 
observation image. We do not want to 

impose a prior that would induce spa-
tial patterns such as clustering effects, 
since we want to generalize our crowd 
model to different video sequences. The 
extrinsic shape process encodes our 
prior knowledge of strong correlations 
between the size and orientation of 
projected objects and their 2-D image 
locations, in views taken by a static 
camera. In addition to extrinsic shape, 
each person is also associated with an 
intrinsic shape to model different 
pedestrian poses, and p 1si 2  is a uni-
form distribution over the shape proto-
type index set S. 

ESTIMATING EXTRINSIC SHAPES
We represent the conditional mark pro-
cess p 1wi, hi, ui|pi 2  by independent 
Gaussian distributions describing the 
expected width, height, and orientation 
of a pedestrian bounding box centered at 
image location pi. The means of these 
Gaussian distributions are automatically 
estimated from a small sample of the 
sequence where the crowd density is low. 
Inferring camera calibration parameters 
from watching people in the scene has 
also been considered in [3] and [4]. 

Since we know pedestrians will be 
oriented vertically, the vertical vanishing 
point of the scene completely deter-
mines the 2-D image orientation of a 
person at any location. Figure 1 illus-
trates computation of the vertical van-
ishing point for a sample sequence. 
Foreground masks are computed for 
each frame via background subtraction. 
Blobs are found by connected compo-
nents, followed by ellipse fitting to com-
pute their center of mass and second 
moments. In Figure 1(e), we repeat the 
process of extracting major axis orienta-
tion of blobs for all frames in a short 
sequence of video. Some of the axes 
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 represent vertical  orientation of individ-
uals who are found as a single blob; 
however, many others are outliers repre-
senting the orientation of multiperson 
blobs, fragmented blobs, or blobs whose 
second moments are corrupted away 
from vertical by arms and legs extending 
out from the person. To find the vertical 
vanishing point, we assume that the 
inlier axes will converge to a vanishing 
point and use random sample consensus 
(RANSAC) to find the intersection point 
voted for by the most axes. We see that 
the computed vanishing point correctly 
captures the change in image orienta-
tion of people at different parts of this 
scene. The orientation of a blob centered 
at any pixel in the image can now be 
computed and stored in a lookup table 
representing the mean of a Gaussian 
distribution on orientation. 

Given blob orientation at each point 
in the image, blob height and width are 
computed with respect to that orienta-
tion. A reasonable first-order model of 
many scenes assumes that people are 
walking or standing on a planar ground 
surface. This planarity assumption regu-
larizes the computation of size by con-
straining the relative depth of people in 
the scene as a smooth function of image 
location. Similar to the computation of 
orientation, height, and width are also 

computed from observations of walking 
pedestrians in a training sequence by 
robustly fitting parametric functions for 
height and width and forming lookup 
tables representing their Gaussian mean 
values at any image pixel. 

LEARNING INTRINSIC SHAPES
Simple geometric shapes such as rectan-
gles or ellipses are only a coarse approxi-
mation to the shape of people we want to 
count. In this section, we learn the 
parameters of a mark process that well 
approximates the appearance of fore-
ground shapes. 

Rather than treating all pixels in a 
rotated and scaled bounding box as fore-
ground, we consider a “soft” segmenta-
tion of shape, representing the probability 
of each pixel being foreground. We use a 
mixture of Bernoulli distributions to 
model learned shape prototypes as rect-
angular patches of spatially varying m 1xi 2  
values, one per pixel, learned from a 
training set of observed foreground 
masks. The m values are high in areas of 
the rectangle that often contain fore-
ground pixels, and low in places that often 
contain background, as visualized in the 
grayscale shape images in Figure 2. The 
mixture model can represent a varied and 
realistic set of shape prototypes, resulting 
in more accurate foreground fitting.

To learn the shape prototypes from a 
training video sequence, we first select a 
random subset of frames labeled with 
ground truth bounding boxes, run back-
ground subtraction to get binary masks, 
which yields a set of binary shape pat-
terns, then scale each shape to a standard 
size. Denote X5 5xi, c, xN6 as the col-
lection of N  training shape patterns, 
where xi5 1xi1, c, xiD 2T (D being the 
size of the shape pattern) and each xij is a 
binary variable. We model X by a mixture 
of Bernoulli distributions. Our choice of 
Bernoulli distribution as the component 
distribution for the mixture model is 
motivated by its success in recognizing 
the shape of handwritten digits [5].
Formally, the mixture model is defined as 

 p 1x|m, p 2 5 a
K

k51
pk p 1x|mk 2 , (2)

where K is the number of mixture com-
ponents, m5 5m1, c, mK6 are the Ber-
noulli mean parameters, each of which 
is itself a vector mk5 1m1, c, mD 2T, 
p5 5p1, c, pK6  are the component 
mixing weights, and p 1x|mk 2 5q D

d51
md

xd 112md 2 112xd2 is one component Ber-
noulli distribution. We extend the above 
classic mixture model to a weighted 
Bernoulli mixture,  motivated by the 
observation that  certain pixels vary more 
across different shapes than other pixels. 

(a) (b) (c)

(d) (f)(e)

[FIG1] The image orientation of a standing person at any image location is determined by automatically estimating the vertical 
vanishing point of the scene from video of walking pedestrians: (a) original image, (b) foreground blobs, (c) blob orientations 
from one frame, (d) blob orientations from many frames, (e) inliers found by RANSAC, and (f) vertical vanishing point.
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For example, the boundary pixels of the 
body shape usually have larger variance 
than the background pixels or pixels sur-
rounding the center of mass. It is there-
fore advantageous to make the model 
spend more effort explaining the higher-
variance parts of the shape so that we can 
get a better shape class model with more 
distinctive components. For this purpose, 
we introduce pixel-wise weights 
v5 1v1, c, vD 2T  that are estimated 
variance at each pixel across all the train-
ing patterns. Hence, p 1x|mk 2  can be 
rewritten as 

 p 1x|mk 25q
D

d51
md

x d vd 112md 2 112xd2vd. (3)

The complete derivation of the above 
equation is provided on our project Web 
page, http://vision.cse.psu.edu/projects/
mpp/mpp.html, but the intuition is sim-
ple: we can treat the weight as a replica-
tion factor; the higher the weights, the 
more important the pixels and the more 
times they get duplicated in the sample. 

One typical difficulty with using mix-
ture models is how to determine the num-
ber of components. We automatically 
determine the number of components K 
by imposing a Dirichlet prior over the 
mixing weights p 1p|a 2 ~ qK

k51
pk
ak21. 

By setting ak . 0, we have a broad prior 
that squashes some of the mixing weights 
to zero, i.e., the Bayesian model automati-
cally balances quality of fit to the data and 
the complexity of the model. Thresholding 
on ak automatically determines the num-
ber of intrinsic shapes learned. In our 
experiments, we set ak to be a small posi-
tive number. All model parameters are 
estimated by the expectation-maximiza-
tion algorithm [2]. The appeal of the 
weighted Bernoulli shape mixture model 
is that the parameter estimation is very 
efficient, yet the model itself is flexible 
enough to be generalized to encode differ-
ent shapes (Figure 2). 

INFERENCE BY RJMCMC
The observed data is a foreground mask, 
assuming the foreground is formed by 
pedestrians in the scene. A generative 
explanation of this foreground mask 
involves selecting the appropriate intrin-
sic shape prototypes and then translating, 

rotating, and scaling them into the image 
to cover the foreground pixels as well as 
possible. To compute the goodness of fit 
of a proposed configuration of shapes to 
the data, we adopt a likelihood function 
similar to previous works [6]–[8]. First 
the configuration is mapped into a soft 
label image. Let xi be the values in the 
label image and yi the binary values in an 
observed foreground mask. The pixel val-
ues in the label image are continuous 
random variables ranging from 30, 1 4, 
parameterized by the mean of the Beroulli 
distribution p 1yi|xi 2 . Assuming condi-
tional independence among the pixels, 
the joint log likelihood function can be 
written as 

 log+ 1Y 0X 2 5 logq
N

i51
p 1yi|xi 2

 5a
N

i51

1 yilogxi1 112 yi2
 3 log 112 xi 22 . (4)

This likelihood function as written does 
not discourage configurations having 
multiple overlapping shapes that claim 
almost the same set of foreground pix-
els. To avoid this, we implement a sim-
ple scheme where the number of 
overlapping pixels is multiplied by a 

nonnegative factor r to form a penalty 
term subtracted from the log likeli-
hood function. 

The likelihood function and the MPP 
prior (1) combine to form a posterior 
that measures how well the observed 
foreground mask can be described as a 
noisy instantiation of our statistical 
crowd model. Pedestrian detection and 
counting then becomes the problem of 
estimating the maximum a posteriori 
(MAP) configuration. We use RJMCMC 
sampling [9], [10] to perform Bayesian 
inference of the best crowd configura-
tion. RJMCMC is an iterative sampling 
procedure that proposes either a local 
update to a current configuration or a 
reversible jump between configurations 
of differing dimensions, and then decides 
stochastically whether or not to accept 
the new configuration based on the value 
of a ratio 

 a 1o, o r 2 5mina1, 
p 1o r2
p 1o2

q 1o r, o2
q 1o, o r2b,

where o and o r are the current and pro-
posed configurations, p 1 # 2  is the poste-
rior distribution evaluated for a given 
configuration, and q 1a, b 2  is the proba-
bility of proposing a transition from a 

(a)

(b)

(c) (d)

[FIG2] Intrinsic shape classes are modeled by a mixture of Bernoulli distributions, 
learned from binary image patches extracted in a training sequence. Detection 
results show that the shape covering accurately characterizes different pedestrian 
poses (e.g., legs together/apart). (a) Training samples, (b) automatically learned 
shapes, (c) detecting soccer players, and (d) detecting people in a shopping mall.
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to b. We use a simple RJMCMC sampler 
composed of birth, death, and update 
proposals [8], [11]. Figure 3 illustrates 
how different proposals switch between 
configurations. Each of the proposals is 
described briefly as follows: 

Birth:1)  A point and mark are pro-
posed and added to the current con-
figuration. We sample the point 
location with a data-driven proposal 
based on the foreground mask. 
Width, height, and orientation of the 
rectangular mark are sampled from 
the conditional mark process, repre-
sented as Gaussian distributions 
indexed by spatial point location. An 
intrinsic Bernoulli shape is chosen 
uniformly at random (u.a.r) from 
the set of learned shape prototypes. 
The reverse move of birth is death. 

Death:2)  The death proposal chooses 
one rectangle at random and 
removes it from the configuration. 
The reverse move is birth. 

Update:3)  One rectangle from the 
configuration is chosen at random 
and either its location or mark 
parameters are modified. Modifica-

tion of location is done as a random 
walk of the shape center. Modification 
of the mark is done in two parts: 
either the mark width, height, and 
orientation are updated by sampling 
from the conditional mark process 
associated with the current location, 
or the intrinsic Bernoulli shape is 
updated u.a.r from the shape proto-
type set. The update proposal is its 
own reverse move. 
Starting with an empty configura-

tion as the initial state, the RJMCMC 
procedure is iterated between 500 and 
3,000 times, with the larger number of 
iterations being needed when there are 
more people in the scene. The move 
probability for birth, death, and update 
proposals is set to be 0.4, 0.2, and 0.4, 
respectively. During iterations, the con-
figuration with the highest observed 
posterior probability is saved, and at 
termination that configuration is out-
put as an estimate of the MAP solution. 

CROWD DENSITY ANALYSIS
Our MPP model with shape appear -
ance is capable of detecting people in 

crowds with various densities, from 
different viewing angles, and in indoor 
and outdoor scenes. Figure 2 shows 
sample detection results on two bench-
mark sequences: the EU CAVIAR data 
set  (http://homepages.inf.ed.ac.uk/rbf/
CAVIAR/) and the VSPETS soccer 
sequence (http://www.cvg.cs.rdg.ac.
uk / VSPETS /vspets-db.html) .  The 
CAVIAR data set contains sequences of 
people walking in a shopping mall. 
People are observed at a large range of 
image sizes as they travel down the 
hallway. The soccer sequence was cap-
tured in an outdoor football field. 
Players have roughly the same size 
throughout the image but often 
occlude each other as they run back 
and forth. Our model captures differ-
ent human body shapes well, as shown 
in Figure 2. 

We also analyzed crowd density 
outside a football stadium, using data 
collected with a Sony DCR VX2000 
digital video camcorder mounted on 
the stadium. The viewpoint is highly 
elevated and the image size of each 
person is relatively small, thus we use 
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[FIG3] Parts (a) and (b) illustrate the principles of MCMC search. The MCMC sampler automatically spends more effort 
generating high probability samples from a configuration space by exploring an implicit local neighborhood of configurations 
generated from a set of proposal moves. Part (c) shows how the different proposals (birth, death, and update) change a current 
configuration into a new hypothesis.
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simple rectangular shapes instead of 
Bernoul l i  shapes  for  detect ion. 
Figure 4 shows sample  detections and 
crowd density estimates. We analyze 
crowd densities at each image location 
by kernel density estimation from de-
tections within a spatio-temporal win-
dow. The visualized density maps at 
two different times [Figure 4(b) and 
(c)] reflect the change in traffic flow 
patterns due to an increased number 
of people leaving after the game 
ended. The crowd density analysis in 
another sequence [Figure 4(d)–(g)] 
looking down at a road outside the 
stadium shows an interesting crowd 
behavior pattern: people moving in 
opposite directions, left and right, 
tend to unconsciously form lanes of 
traffic to avoid collisions, helping the 
entire crowd move more smoothly. As 
a result, the leftward and rightward 
crowd densities exhibit an anticorre-
lated pattern [Figure 4(g)], known as 
the “fingering effect” within the study 
of crowd dynamics. 

SUMMARY AND ONGOING WORK
We have presented an MPP model for 
detecting people in crowds, with a mark 
process parameterized by extrinsic 
appearance (geometry) and intrinsic 
appearance (shape and posture), learned 
separately from training sequences. The 
optimal crowd configuration is estimated 
by RJMCMC sampling methods and used 
for crowd scene analysis under different 
crowd densities and environmental situ-
ations. Our current approach analyzes 
each frame independently, thus is suit-
able for counting people in sequences 
with very low frame rate or for automatic 
initialization of a multitarget tracker. 
However, it is also possible to incorpo-
rate temporal coherence and to integrate 
detection and tracking within the same 
sampling framework by augmenting the 
state space with temporal variables, simi-
lar to [12]. The Bayesian formulation for 
learning weighted Bernoulli shape masks 
is very flexible, and can be used to model 
a variety of shapes within the MPP 
 framework. In follow-up work, we also 

plan to consider different object classes 
(cars, bikes, and pedestrians) using the 
same model framework, with potential 
applications to activity monitoring at 
road intersections. 
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[FIG4] Two different crowd density analyses are shown in (a)–(c) and (d)–(g). (a) Crowd detection overlaid on an image of people 
leaving a football stadium, with red lines delineating the major lanes of egress. (b) and (c) show kernel density estimates of crowd 
density over spatio-temporal windows centered at two different times. (d) Centroids of the detections overlaid on an image of 
pedestrians walking on a road outside the stadium prior to the game. Detections moving left are colored in green and rightward 
detections are colored in red. (e) Crowd density of leftward traffic. (f) Crowd density of rightward traffic. (g) Confirmation that 
individuals in the crowd unconsciously form anticorrelated lanes of traffic, the well-known “fingering effect.”
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Needless to say, I am delighted by 
these technology developments, not 
only because of their convenience and 
expansive educational potential, but 
because all of it, the cameras, displays, 
broadcast system, video courseware, and 
video recordings, are examples of 
byproducts of digital video processing 
research. It is very satisfying to lecture 
using the technology I am teaching.

Looking ahead, there are more excit-
ing developments, not the least of which 
is 3-D. The movie Avatar has raised pub-
lic awareness of the amazing experi-
ences to be found in cinematic 3-D 
video. More importantly, 3-D technology 
is going to significantly penetrate the 
broader consumer market soon—3-D 
televisions are already commercially 
available, and glasses-free auto-stereo-
scopic displays will soon be good enough 
(and cheap enough) for the home audi-
ence as well. These displays will also be 
found on handheld devices. We aren’t to 
the point of Princess Leia calling for 
“Obi-Wan Kenobi” via holo-projection, 
but we aren’t far either.

These 3-D technologies will be avail-
able in the classroom as well. Before 
long, 3-D classroom displays will not be 
uncommon, and given the exposure and 
commercial drive in this direction, 3-D 
video instruction (meaning 3-D topics) 
and 3-D instruction techniques (mean-
ing teaching in 3-D) are obvious develop-
ments to look forward to.

I hope that I have been able to express 
the enthusiasm and joy I find in teaching 

digital video processing. As I approach 30 
years as a professor, there are many 
things that I do not look forward to every 
day, but one thing I always anticipate is 
lecturing on digital video.

RECOMMENDATION 6
Toss the chalk and whiteboard marker! 
Use modern video acquisition, commu-
nication and interactive display technol-
ogy to teach digital video processing!
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