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Abstract

Symmetry is a pervasive phenomenon presenting itself in
all forms and scales in natural and manmade environments.
Its detection plays an essential role at all levels of human as
well as machine perception. The recent resurging interest in
computational symmetry for computer vision and computer
graphics applications has motivated us to conduct a US
NSF funded symmetry detection algorithm competition as
a workshop affiliated with the Computer Vision and Pattern
Recognition (CVPR) Conference 2011 and 2013. This 2013
competition sets a more comprehensive benchmark for com-
puter vision symmetry detection algorithms. In this report
we explain the evaluation metric and the automatic evalua-
tion workflow. We also present and analyze the algorithms
submitted, and show their results on three test sets of real
world images depicting reflection, rotation and translation
symmetries respectively. This competition establishes a per-
formance baseline for future work on symmetry detection.

1. Introduction

In the arts and sciences, as well as in our daily lives,
symmetry has made a profound and lasting impact. Like-
wise, a computational treatment of symmetry and group
theory (the ultimate mathematical formalization of symme-
try) has the potential to play an important role in the compu-
tational sciences. Although seeking symmetry from digital
data has been attempted for over four decades, a fully au-
tomated symmetry-savvy recognition system still remains
a challenge for real world applications. However, the re-
cent resurging interest in computational symmetry for com-
puter vision and computer graphics applications has pro-
vided promising results [2, 4, 8].

Recognizing the fundamental relevance and potential

power that computational symmetry affords, we organized a
symmetry detection competition and performed a quantita-
tive benchmark on a diverse set of real world images. In this
report we present the evaluation methodology and results of
this competition, which was divided into three parts, each
focusing on one of the three types of symmetries: reflec-
tion, rotation and translation respectively.

We received six submissions for symmetry detection,
three for reflection, one for rotation and two for translation
symmetry. Adding one baseline algorithm to each symme-
try group for comparison, we evaluated a total of nine algo-
rithms. The evaluation process was completely automated,
counting the number of true positives (TP), false positives
(FP) and false negatives (FN). The overall detection per-
formance is presented in the form of precision and recall
curves.

2. Data Sets and Annotation
2.1. Data Collection

For each symmetry category, we collected images de-
picting objects with representative symmetry features. To
minimize bias towards specific symmetries, we also ob-
tained a large variety of symmetry images from professional
and amateur photographers who signed up and submitted
images to our Flickr photo sharing website1. We collected
a total of 380 images-some examples are shown in Fig. 1.

2.2. Categorization of Image Data Sets

For each symmetry type we split the obtained datasets
into a number of relevant sub categories. For example, we
split all 121 images of the reflection symmetry set into sin-
gle axis (75) and multiple axes (46), depending on whether
there exists one or multiple reflection symmetry pattern(s)

1http://www.flickr.com/groups/symmetrycompetition
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Figure 1. Examples of our dataset. (a) Reflection Symmetry; (b) Rotation Symmetry; (c) Translation Symmetry; (d) Translation Symmetry
(Urban Buildings).

within each image.
We further divide the data into training set and testing

set. For the training set, both the images and our labeled
groundtruth are released, and the contestants are encour-
aged to use the provided labels to learn/tune their mod-
els automatically. For the testing set, only the images
are released, and we use our automatic symmetry detec-
tion/matching evaluation toolkit to match the results sub-
mitted from participants with our groundtruth labels. An
overview of our full dataset is listed in Tab. 1.

Symmetry type #imgs #Syms

Reflection single 35/40 35/40
multiple 16/30 39/98

Rotation single 5/29 5/29
multiple 5/30 28/193

Translation lattice 21/60 34/101
frieze 29/60 45/60

Table 1. Statistics of our symmetry dataset, where a/b denotes the
number for training and testing, respectively.

Figure 2. Images with annotation labels for (Left) reflection, (Mid)
rotation and (Right) translation symmetry.

2.3. Groundtruth Annotation

Employing 30 students from our course on “Symmetry
for Image Processing” at Penn State, each image was la-
beled using annotation programs developed specifically for
this purpose. The groundtruth labeling contains a total of
212 reflection symmetries, 255 rotation symmetries and 240
translation symmetries. An example of annotation labels for
each of the three symmetry groups is shown in Fig. 2.

Reflection symmetry axes are marked as a line segment
with two end points. The length of the line covers the re-
spective support region of the annotated symmetry. Deter-
mining the width of the supporting region perpendicular to
the reflection axis is beyond the scope of this competition.



For rotation symmetry, an ellipse is defined that covers the
maximal support region, with center point c = (cx, cy),
major and minor axis length L = (a, b) and the orienta-
tion θ of major axis with respect to the image x-axis. For
translation symmetry, a lattice is defined with a start point
P = (x, y) and two shortest and non-parallel translational-
invariant vectors T1 and T2 that specify the smallest tile.
Each tile represents one texel in a wallpaper pattern.

2.4. Annotation Ambiguities

During the annotation phase we identified a number of
ambiguities that can arise during the labeling process. In
all cases of ambiguities a tradeoff between local and global
context seems to play a major role in deciding how the am-
biguity can be resolved. Here, we give two examples from
reflection symmetry that highlight ambiguities caused by
scale of context and object deformations: (1)Hierarchical
Ambiguity; (2)Shape Ambiguity.

Looking at hierarchical ambiguity, we refer to Fig. 3.
Symmetry is defined as a transformation g of a set of points
S such that g(S) = S. Traditionally S represents the en-
tire set of points, or in the case of a 2D space, the entire
image. Given such a global definition of symmetry, only
few true symmetries can be defined. However, to the hu-
man eye many more symmetries appear when viewed on a
local rather than global scale.

When looking at Shape Ambiguity we are confronted
with the problem that the definition of symmetry g(S) = S
seldom holds true in practice. In real images, symmetric
sub-parts rarely are exact copies of each other. Instead,
slight deformation of shape and subtle differences in tex-
ture, color or lighting are commonplace, yet to the human
eye such differences are often of little significance when
judging symmetry (Fig. 4). Similar scenarios of ambigu-
ity can be constructed for rotation and translation symmetry
as well.

Eventually, what is required is to define a symmetry
transformation that is invariant to small and local distur-
bances of object shape and appearance. A more formal def-
inition of such symmetry ambiguities is required and we
believe the study of human perception would play an im-
portant role here.

3. Contestants and Algorithm Evaluation

In this section we outline how the evaluation of submit-
ted algorithms has been carried out. We received six sub-
missions for symmetry detection, three for reflection, one
for rotation and two for translation symmetry. Adding one
baseline algorithm to each symmetry group for comparison,
we evaluated a total of nine algorithms (Tab. 2).

(a) (b)

(c)
Figure 3. Hierarchical Ambiguity of reflection symmetry. (a)
Without local context, symmetry is defined over the entire image.
(b) When using a subset of the 2D plane (local context) many dif-
ferent reflection symmetries can be defined. (c) An example of
scale dependent annotation of reflection symmetry (blue lines).

Figure 4. Shape Ambiguity in reflection symmetry. (Top Row)
Two squares form a perfect reflection symmetry along their mir-
ror axis. However, as one of the squares changes into a triangle,
the boundary between valid and invalid symmetry fades. (Bottom
row) Real world examples of shape ambiguity. While reflection
symmetry within an object seems legitimate, symmetry between
objects seems to be more subjective and application dependent.

3.1. Algorithm Evaluation via Precision Recall
Curve

For all three symmetry groups the algorithm perfor-
mances are measured mainly in terms of precision and recall

Symmetry Group Contestant(s)

Reflection Michaelsen et al. [6]
Patraucean et al. [9]
Petrosino et al. [3]

Loy et al. [5] (baseline)

Rotation Petrosino et al. [3]
Loy et al. [5] (baseline)

Translation Cai et al. [1]
Michaelsen et al. [6]

Park et al. [7] (baseline)

Table 2. Contestants and baseline algorithms in this competition.



rates, where

precision = TP/(TP + FP) (1)
recall = TP/(TP + FN). (2)

We also encourage the participants to submit multiple
detection results for each image, which can be ranked via
their confidence scores. By varying the threshold of this
confidence score, we can make a trade-off between preci-
sion and recall performances and obtain the precision-recall
curve for each algorithm.

3.2. Reflection Symmetry Evaluation

For each detection result Ri with its center point c, we
measure the angle θ between the detected symmetry axis
(R) and the ground-truth axis (RGT ). We also measure the
distance d from the center c to the groundtruth line segment.
A correct detection (true positive) is achieved if the orienta-
tion between the two axis is less then some threshold t1 and
the distance between the two axis is less then some thresh-
old t2. Fig. 5(a) gives an illustration, where we use t1 = 10◦

and t2 = 0.2 · min{ldet, lGT } with ldet and lGT being the
lengths of the detected axis and the groundtruth label, re-
spectively.

Since a one-to-many matching may exist, e.g. a long
groundtruth axis is perceived as multiple short axis seg-
ments, multiple detections {Ri, Rj , . . .} can be clustered if
they are matched with the same ground-truth axis. On the
other hand, one detection result cannot be matched to more
than one groundtruth axis - the groundtruth with minimum
distance d is accepted. For example the situation in Fig. 5(b)
results in TP = 1(GT1), FP = 1(R2) and FN = 1(GT2).
The size of the symmetry support region is not considered
in this competition.

3.3. Rotation Symmetry Evaluation

To simplify the analysis of the detection results for ro-
tation symmetry, we consider only the centers of rotation
as opposed to including the other definable aspects of ro-
tation symmetry (e.g. ellipse major/minor axis length and
offset angle, number of folds and discrete/continuous). This

(a) (b)
Figure 5. (a) A detected reflection axisR (blue) is compared to the
groundtruth GT (red) by measuring the distance d and the relative
angle θ between the two axes. (b) shows an example of many-to-
many matching of detection results (blue) with labels (red), which
results in TP = 1(GT1), FP = 1(R2) and FN = 1(GT2).

Figure 6. A detected rotation symmetry with center C and circu-
lar support region with radiusR is compared against a groundtruth
symmetry with centerCGT and region radiusRGT . If the distance
d between the two centers is below some threshold and the sym-
metries have a similar support region, then the detected symmetry
is considered valid

removes ambiguity that arises when multiple rotation sym-
metries of differing size and shape share the same center,
as well as allows a more concrete and direct comparison of
performance between different algorithms.

For each detection result we measure the Euclidean dis-
tance d between detected (C) and ground-truth symmetry
center (CGT ) normalized by the size of the image. A cor-
rect detection (TP) is achieved when d < τ . And we choose
τ = 0.025, indicating a maximum error of 2.5% relative to
the magnitude of the image size.

As with reflection symmetry, one detection result can
match to only one ground-truth symmetry, but multiple dif-
ferent detections can be matched to one ground-truth center.

3.4. Translation Symmetry Evaluation

Since a lattice may have T1, T2 direction ambiguity and
offset along these directions, we have created an automated
method of lattice evaluation [7] that establishes a mapping
between a detected lattice T and the ground truth lattice G
by minimizing a distance cost-function between paired lat-
tice points using a globally unique affine transformation to
all detected lattice points, as shown in Fig. 7(a).

(a) (b) (c)

Figure 7. (a) A global offset between ground truth (red) and de-
tected lattice (dotted black) is found by minimizing the distance
between all lattice points under an optimal global affine trans-
formation applied to all tiles simultaneously; (b) a groundtruth
lattice with Ng = 17; (c) detected lattice with Nt = 5, thus
TSR = 29.4%.

For each detected lattice, we conduct a global matching
to the groundtruth, and count the number of correctly de-
tected tiles in the lattice structureNt. A quadrilateral lattice
tile is correct if all its four corners match up to corners in the
ground-truth lattice. With the number of tiles in the ground-



truth latticeNg , we compute the tile-success-ratio(TSR) for
each detected lattice as Nt/Ng . An example is shown in
Fig. 7(c).

If a detected lattice has enough correctly detected tiles
(TSR > τ ), this lattice is regarded as TP, otherwise as FP.
We first set τ = 0 and evaluate the precision/recall rates,
which shows how well an algorithm can detect a lattice. we
then gradually increase the threshold τ , which results in a
decrease of the recall rate and reflects an algorithm’s ability
to detect more complete lattices.

4. Results
4.1. Reflection Symmetry

The sample results and precision and recall trade-off
curves of all four algorithms are shown in Fig. 8 and Fig. 9,
respectively. It can be seen that on the single reflection im-
age set, the performances of Petrosino’s and Patraucean’s
are similar, except that Patraucean’s achieves a higher re-
call at the expense of low precision. Yet, the algorithm by
Loy and Eklundh (Loy) outperforms all contestants for the
most part. However Patraucean’s has a slightly higher pre-
cision under the same recall rate between 80% and 86%;
This advantage is more obvious for the multiple reflection
image set, where Patraucean’s achieves a 20% higher preci-
sion compared to Loy’s under the same recall rate of 50%.

Michaelsen’s algorithm also captures many small sym-
metric structures in the image. However these small struc-
tures in general do not quite agree with human perception as
humans are more likely to recognize and label bigger/global
symmetry patterns. Thus the precision rates appear to be
low.

(a) (b) (c) (d)
Figure 8. Sample results of single reflection (a,b) and multiple re-
flection detection (c,d). The white, red, green and blue axes de-
notes Loy’s, Michaelsen’s, Patraucean’s and Petrosino’s algorithm
output respectively. Only the top 3 symmetries are plotted here for
multiple reflection detection.

(a) (b)
Figure 9. Precision-recall curve comparison of reflection symme-
try detection. (a) single reflection axis; (b) multiple reflection axes.

(a) (b) (c) (d)
Figure 10. Sample results from the algorithms of Petrosino (a,c)
and Loy (b,d).

(a) (b)
Figure 11. Precision-recall curve comparison of rotation symmetry
detection. (a) single center; (b) multiple centers.

4.2. Rotation Symmetry

There is a disparity in results between images with a
single rotation symmetry center and multiple centers. The
sample detection output and precision-recall curves are
given in Fig. 10 and Fig. 11, respectively. For single ro-
tation center images, Loy’s algorithm outperformed Pet-
rosino’s in terms of both the precision and recall rates.
However, for images with multiple centers, Petrosino’s al-
gorithm achieved higher recall and precision rates.

4.3. Translation Symmetry

The translation symmetry dataset has two classes: wall-
paper and frieze. Our baseline method of Park, et al. [7]
can only detect lattices and the submission of Michaelsen
et al. [6] only deals with friezes. The submission of Cai,
et al. [1] detects both frieze and lattice, however it requires
manual input for initial patches. Some detection results are
shown in Fig. 12.

The comparisons between Cai and Park on lattice de-
tection are given in Fig. 13(a),(b) in the form of precision-
recall curve and recall-τ curve, respectively. In general
Cai’s algorithm outperforms Parks baseline on lattice detec-
tion. However, it is worthwhile to note that Park’s algorithm
is fully automatic while Cai’s requires human input. It can
be seen from Fig. 13 that the recall rates of Cai’s decreases
faster than Park’s as we increase τ , which means that Cai’s
algorithm detects more but less-complete lattices; on the
other hand, the baseline method of Park’s detects fewer but
more-complete lattices.

The precision and recall trade-off curve for frieze is
shown in Fig. 13(c), where Cai’s algorithm outperforms
Michaelsen’s.



(a) (b) (c) (d)
Figure 12. Sample results of translation symmetry detection. (a) A lattice detected by Cai; (b) A lattice by Park; (c) A frieze by Cai; (d) A
frieze by Michaelsen.

(a) (b) (c)
Figure 13. Evaluation of translation symmetry detection. (a) precision-recall curves on lattice detection (τ = 0). (b) Recall-τ curves on
lattice detection; (c) Precision-recall curves on frieze detection.

5. Conclusion

We established a testbed for the evaluation of symmetry
detection algorithms, devised evaluation metrics and auto-
mated the evaluation process. We tested our process on nine
algorithms and established a performance baseline that can
be used as a benchmark for future work on symmetry detec-
tion.
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