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Abstract

An efficient multilevel method for solving normalized cut
image segmentation problems is presented. The method
uses the lattice geometry of images to define a set of coars-
ened graph partitioning problems. This problem hierarchy
provides a framework for rapidly estimating the eigenvec-
tors of normalized graph Laplacians. Within this frame-
work, a coarse solution obtained with a standard eigen-
solver is propagated to increasingly fine problem instances
and refined using subspace iterations. Results are presented
for image segmentation and tracking problems. The compu-
tational cost of the multilevel method is an order of magni-
tude lower than current sampling techniques and results in
more stable image segmentations.

1 Introduction

The normalized cut (NCut), proposed by Shi and Malik
[11], provides a rigorous computational foundation for im-
age segmentation problems. A graph is constructed from
the image such that the pixels constitute the vertex set, con-
nected by weighted edges representing similarity between
nearby pixels. This formulation allows the image segmen-
tation problem to be treated as a graph partition of the vertex
set. The partition measure associated with the NCut seeks
to simultaneously minimize the cross segment connectivity
and maximize the within segment association. The normal-
ized cut criterion effectively suppresses the spuriously small
segmentations that arise in minimum cut formulations.

The authors of [11] develop a spectral relaxation of the
normalized cut criterion to optimize their NP-hard objec-
tive function. This relaxation provides a bounded quality
cut with respect to the original discrete problem. Relax-
ations of this form were further extended by Yu and Shi in
[13, 14], who allow constraints to be included in the cut
function and derive multiway cuts. While powerful, com-
putational cost remains a major obstacle to the integration
of these techniques into vision systems.

In this paper we present a technique that reduces the
computational cost while yielding the exact continuous op-
timal solution. For image segmentation the method exploits

the lattice structure of the pixel coordinates to define a mul-
tilevel approach to computing the eigenstructure of graph
Laplacians. A coarse solution is obtained using a stan-
dard eigensolver and propagated through increasingly re-
fined problem instances. At each level the projected solu-
tion is fit to the current problem by subspace iterations1 and
then projected onto a further refined problem instance. The
resulting solution hierarchy defined by interpolation and re-
finement rules provides a good initial approximation to the
eigenvectors of the Laplacian of the full graph.

Our multilevel method results in orders of magnitude
speed improvements over the Lanczos algorithm (see [4]),
for eigenspace computation, used by Shi and Malik in [11].
The solutions obtained are shown to be superior to approx-
imation techniques in [13, 5] that sample the graph repre-
sentation to reduce computational cost of the eigenstructure
computation. Unlike approximation techniques, including
the algebraic multigrid approach of Sharon et al.[10], our
multilevel method maintains the quality bound given for
spectral relaxations. We present image segmentation and
tracking results. These results are obtained orders of magni-
tude faster than the full eigenproblem posed in [11], and are
more stable than those obtained by samplings techniques.
We compare of our technique with the sampling heuristic
employed by Yu and Shi[13] and the Nyström approxima-
tion of Fowlkes et al.[5]. We also demonstrate how the mul-
tilevel graph structure regularizes the problem, alleviating
the sensitivity to parameters such as neighborhood density
and scale.

2 Graph Partitioning

To pose image segmentation as a graph partitioning prob-
lem, we must construct a graph from the image data. This
is done by assigning a vertex in the graph to each pixel in the
image. The connectivity of the graph is defined by spatial
neighborhoods in the image plane. For any two neighboring
pixels an edge weight is assigned in proportion to the level
of feature agreement between the pixels. Typical pairwise
pixel features include color similarity, texture descriptions,

1Subspace Iterations [4] are a generalization of the power-method, for
estimating the dominant eigenvector, to invariant subspace estimation.
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and the magnitude of edges along the path between two pix-
els. Given such a graph G = (V,E) with a vertex set V and
edge set E a cut separates the graph into disjoint subsets
such that V ⊇ ⋃

Vi and ∀(i, j) Vi ∩ Vj = ∅.
There are many cut criteria, such as the minimum, maxi-

mum, average, and normalized cut [11]. The normalized cut
is a desirable measure as it seeks to partition the graph into
strongly connected subgraphs that are weakly connected to
each other. The normalized cut criterion is:

argmin
V1,..,Vp

:
1
p

p∑
i=1

|E(Vi, V \ Vi)|
vol(Vi)

(1)

where vol(Vi) is the sum of edge weights associated with
the vertices in Vi, and |E(Vi, V \Vi)| is the sum of the edge
weights connecting Vi to remainder of the graph.

In addition to the cut criterion, or objective function, the
formulation can be generalized to include balance and co-
membership constraints. The problem of obtaining the op-
timal cut with respect to Equation 1 is NP-hard in general.
One family of tractable techniques for computing a bounded
quality normalized cut of G is the spectral relaxation.

2.1 The Spectral Relaxation

The normalized cut graph partitioning criterion can be ex-
pressed as a quadratic form on the matrix representation of
the graph. The combinatorial problem formulation leads to
an NP-hard quadratic program for the optimal p-way cut
[13], expressed as:

min
Z

:
1
p

tr
ZT (D −W )Z

ZT DZ
(2)

s.t. : Zij ∈ {0, 1} (3)

: ZT Z = diag(|V1|, ..., |Vp|]) (4)

where W is the weight matrix associated with G and dii

is the ith entry of the diagonal mass matrix of W , defined
as D(i, i) =

∑n
j=1 W (i, j) = vol(vi). The constraints

in Equation 3 and 4 insure that the partition matrix Z is
binary and that the partitions are disjoint. The relaxation
to an eigenstructure problem is obtained by removing the
discrete constraint, Zi,j ∈ {0, 1} on the entries of Z, while
preserving the orthogonality constraint implicit in Equation
4 (i.e. that ZT Z = Ip). It is clear that Rayleigh Quotient
expressed in Equation 2 subject only to the orthogonality
constraint is exactly a generalized eigenproblem in Z.

The eigen-relaxation of Equation 2 can be further simpli-
fied by working with the symmeterized version of the gener-
alized eigenproblem. The symmetric eigenproblem equiva-
lent to Equation 2 is defined as:

min
X

: tr (XT X)−1XTL(W )X (5)

where L(W ) .= D−1/2(D − W )D−1/2. The solution to
Equation 5 can be related exactly to the relaxed solution to
the generalized eigenproblem as Z = D−1/2X . This re-
laxation demonstrates, in concert with Ky Fan’s dominance
theorem [6], that the minimizer of the relaxed instance of
Equation 5 is in fact the p−dimensional subspace X corre-
sponding to the p smallest eigenvalues of L(W ).

The continuous solution X to Equation 5 must be
rounded to obtain a discrete solution that induces a cut in
G. Several methods have been proposed for obtaining a dis-
crete solution from the eigenvectors. The embedding meth-
ods treat the eigenvectors as defining a p-dimensional coor-
dinate for each vertex in the graph. These points are then
clustered using k-means or a similar technique. In Chan
et al.[3], the clustering is performed on the angles between
data points, based on the observation that the objective value
of Equation 5 is invariant to change of basis in X , and there-
fore only the relative angles should be employed in compar-
ing points. Ng et al.[9] made a similar observation, and rec-
ommended projecting the embedded points onto the sphere
to satisfy the invariance. This projection allowed k-means
clustering to be used directly on the projected coordinates.
Yu and Shi [13] use the projection recommended in [9] but
iteratively align the points with the positive orthant of the
p−sphere. Unlike Ng, they show that the first eigenvector
of L(W ), x̂1 = D1/21̂, should be used in discretization
step. The spectral partition community has suggested sev-
eral other approaches, such as recursive 2-way partitioning.
We employ the method in [13] to obtain our results. This
decision was motivated by the empirical consistency of the
solutions obtained across multiple initializations.

Several approximate normalized cuts (NCuts) tech-
niques have been proposed to overcome the computational
cost incurred in diagonalizing large matrices . The Nyström
approximation for NCuts proposed by Fowlkes et al. [5]
randomly samples the graph and then projects the subsam-
pled solution onto the original problem. This can inter-
preted as a very simple multilevel technique with uncertain
convergence. Sharon et al. [10] proposed an approxima-
tion of the normalized cut, solved using Algebraic Multigrid
(AMG). While both of these methods provide great compu-
tational gains neither method is solving the exact normal-
ized cut or a complete bounded relaxation. Our proposed
method, similar to Barnard [2] in the domain decomposition
literature, solves the exact spectral relaxation of the NCuts
problem. This is accomplished by efficiently solving the
eigenvector computation required by Equation 2. This has
the advantage of maintaining the bound on solution quality
derived from the relaxation.
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Figure 1: A schematic of the multilevel method. The pairwise similarity graph G0 is computed using the feature image at the
original resolution. The eigenproblem Prob0 is coarsened n times using a kernel on the image lattice geometry; this results
in the problem hierarchy Prob0 � ... � Probn−1. The Lanczos algorithm is used to estimate the eigenvectors for Probn−1,
this solution is then refined and used to initialize the subspace iterations[4]. These refinement and fitting operations step
solutions down the hierarchy until a solution at the original problem fidelity is obtained. The continuous solution is then
discretized using the alignment method proposed in [13].

3 The Multilevel Method

The relaxation of Equation 2 to a continuous-valued prob-
lem allows the solution to the NP-hard optimal cut problem
to be approximated as an eigenstructure problem. We ad-
dress the efficient computation of this class of relaxations,
the spectral relaxation, by developing a multilevel technique
for computing the eigenvectors of graph Laplacians. In-
tuitively, multilevel methods are effective for mixing algo-
rithms (such as the power method) as they operate on a se-
ries of related graphs with increasingly reduced diameter. A
schematic of the proposed multilevel method can be found
in Figure 1.

Based on Teng’s framework [12] for specifying multi-
level methods, we decompose our technique into three dis-
tinct classes of operations: coarsening, refinement, and fit-
ting. The proposed method is situated in this framework as
follows:

1 Coarsening Operation: the geometric interpolation
rule is employed recursively to construct n−1 reduced
problems Prob0 � Prob1 � ... � Probn−1.

2 Refinement Operation: maps the solution Πk to an es-
timate Π∗

k−1 for the refined problem Probk−1 by ap-
plying the transpose of the interpolation rule to the so-
lution Πk.

3 Fitting Operation: improves the estimate of the eigen-
structure Π∗

k−1 = (Λ∗
k, X∗

k) through an iterative esti-
mation technique such as subspace iteration[4].

3.1 Coarsening with Geometric Graph Ker-
nels

To map weights from a graph G to a coarsened graph G′

we define a |V ′| × |V | interpolation matrix T using a ker-
nel on the geometry of V and V ′ such that T (u, v) =
K(xu, xv) : u ∈ V ′, v ∈ V , where xv denotes the co-
ordinate assigned to the vertex v. To insure a well behaved
matrix T , we place the following conditions on the kernel
K: K(xu, xv) ≥ 0 and

∑
v∈V K(xu, xv)2 = 1. These

conditions restrict TT T, TTT to the set of doubly stochas-
tic matrices. Interpolations of form T preserve the normal-
ization central to NCuts as TT T and TTT are both doubly
stochastic.

We define a bilinear lattice kernel (BLK) on the coordi-
nates of image pixels to determine the coarsening and re-
finement operations. The entries in the sparse bilinear inter-
polation matrix B are determined as follows:

B(u, v) =
{

.5 : xv ∈ N4(u, V )
0 : otherwise

(6)

where N4 is the 2× 2 refined lattice neighborhood centered
at the coordinate xu. The vertices of V ′ were positioned be-
tween every 4 vertices in V . This results in a coarsening of
vertex set V by approximately 1/4 to the vertex set V ′. It is
clear from the construction of the kernel B that the operator
satisfies our kernel criteria placed on the interpolation ma-
trices T . Other interpolation matrices of this form may be
applied to the NCuts matrix as long as the kernel conditions
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are satisfied.

3.2 Refinement: the Transpose of a Geomet-
ric Graph Kernel

The refinement operation is, in general, the transpose of the
interpolation matrix T used to coarsen the problem. The
BLK, in Equation 6, is perhaps the simplest effective ker-
nel for coarsening and refining the graph. Solution refine-
ment with BT duplicates the eigenvector valuation Xk for
each vertex over its four ancestors in Probk−1. This op-
eration is performed for each vertex in Probk, generating
an approximate eigenvector for Probk−1. Conveniently,
BLK refinement preserves orthogonality (as XT

k−1Xk−1 =
XT

k BBT Xk = XT
k Xk = I).

To mitigate the excessive smoothing accompanying the
BLK (Equation 6), we add an empirical diffusion to the re-
finement operation. The empirical smoother for refining the
solution for k to an estimate for k − 1 is defined as:

E = D−1
k−1Wk−1B

T (7)

where Dk and Wk are the mass and weight matrices derived
from G. This preserves more of the structure of the local
weighting associated with each vertex.

3.3 Fitting: Iterative Subspace Estimation

The solution Πk is refined to generate Π∗
k−1 for problem

Probk−1, and is improved using an iterative invariant sub-
space estimation technique. In the this work we employ
subspace iterations [4].

Subspace iterations generalize the power method, which
is an algorithm for estimating the eigenvector paired with
largest eigenvalue of a matrix A. The algorithm operates by
iterating the following two steps until convergence. If X(p)

is the current estimate of the solution (a set of p orthonormal
eigenvectors):

Zp ← AX(p) (8)

XpR ← Zp (Q.R. decomposition ) (9)

Intuitively, the algorithm operates as follows. The current
estimate of the X(p) can be split into two components: (1)
the component in the subspace spanned by the p largest
eigenvectors, (2) the component in the orthogonal comple-
ment. Each time step 1 (Equation 8) is applied the compo-
nent in the subspace spanned by the p largest eigenvectors
is multiplied by at least λp and the other component by less
than λp+1. Hence after the re-orthonormalization the com-
ponent in the orthogonal complement is reduced by at least
λp+1/λp in each iteration. In the limit the orthognoal com-
plement disappears and all that is left is the component in
the subspace spanned by the p largest eigenvectors. The

only requirement for convergence is that the initial estimate
has a non-zero component in each direction in the target
subspace. This occurs with probability 1 for a random ini-
tialization, although there are pathological counter exam-
ples.

To make L suitable for power-type methods, we must
transform its eigenvalues. The maximization form denoted
L+ associates the target subspace with the largest eigenval-
ues of L+ so that the subspace iteration will converge to the
desired subspace of L. This is accomplished by changing
the sign on the eigenvalues of L and adding 1. Recall that
the matrix form of Equation 5 isL = D−1/2(D−W )D−1/2

with eigenvalues in [0, 2], and note that this equivalent to I−
D−1/2WD−1/2. By dropping the subtraction and adding I
we arrive at an appropriate matrix for maximization L+ =
D−1/2WD−1/2 + I . As the eigenvectors that minimize
trace XTL(W )X maximize trace XTL+(W )X , there-
fore we can use subspace iterations to compute the appro-
priate eigenvectors for partitioning.

Finally, the normalization used to compute the Lapla-
cian differs from the Markov chain matrix P . As L+ in-
volves an inhomogenous normalization function dictating
that the coarsening operation must be computed as Lk =
L+(TWk−1T

T ) rather than Lk = TLk−1T
T .

4 Image Segmentation Results

We demonstrate our technique on images of size 300× 300
pixels. The results, shown in Figure 2, are compared with
segmentations generated by the methods of Yu and Shi [13]
and Fowlkes et al.[5]. To facilitate comparison, overlapping
parameters such as feature significance and the number of
segments, between the methods were fixed. In the case of
[13, 5] the method specific parameters such as the number
of samples and the spatial neighborhood size were set to
values published by the authors. For the multilevel method
we used a 4 level problem hierarchy with the BLK for the
coarsening operator and the smoother from Equation 7 for
the refinement operator.

As in [13] we use the intervening contour (IC) from Ma-
lik et al [7] to assign weights between neighboring pixels
(vertices). The IC specifies that the edge weight between
connected pixels is inversely proportional to largest edge
intensity along the line connecting the pixels. We used
σIC = .15, as the significance of the IC based on the param-
eters given in Yu and Shi [13]. Figure 2 column 2 displays
the filtered images used to compute the graph edge weights.

Overall our method is nearly 10 times faster than the
sampling methods used in [13] and developed in [5], as
shown in Figure 2, and approximately 100 times than MAT-
LAB’s Lanczos implementation applied to full resolution
graph, as shown in Figure 3. As the multilevel method
solves for the eigenvectors of the full fidelity matrix, the
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Input Data Feature Image Multilevel Yu & Shi 2003 Nyström 2003

9 seconds 88 seconds 73 seconds

7 seconds 72 seconds 68 seconds

9 seconds 93 seconds 72 seconds

Figure 2: A comparison of accelerated NCuts image segmentation methods. Timing numbers are given for the eigenvector estimation
only. The numbers were generated on an Apple 2GHz G5 processor running MATLAB with matrix multiplication in C . Results are given
for the propose method (column 3), Yu and Shi [13] (column 4), and Nyström approximation [5] (column 5). The major computational
bottleneck for [13] was in computing the partial eigensolution to the sample matrix via MATLAB’s Lanczos implementation. For the
Nyström approximation [5] the bottleneck was the inversion of a small sample matrix. In the multilevel method the majority of the
computational time was spent on subspace iterations at the finest representation of the graph.

solutions are more consistent with the image data and do
not violate the normalized cut criterion given in Equation 1.

Each sampling technique has deficits. The sampling
technique used in [13] neglects intensity boundaries in the
image. This effect is visible in the image of the child in row
1, column 4 and the limbs of the dog in row 2, column 4.
The Nyström approximation fails in that it generates spuri-
ously small segments such as the rear paw of the dog in row
3, column 5 and segments that are fragmented in the image
plane. Both of these errors are alleviated by exploiting all
the data in the graph as is done in the proposed multilevel
method.

4.1 Regularization through a Multilevel
Method

The hierarchy of graph problems results in a well condi-
tioned computation for estimating the eigenvectors of L.

Figure 3 illustrates how a small change in the parame-
ters used to generate the graph makes the problem ill-
conditioned with respect to the MATLAB’s Lanczos imple-
mentation. This results in long convergence times for the
Lanczos algorithm in most cases as well as the occasional
failure to converge.

5 Segmentation Tracking

We demonstrate a simultaneous segmentation and tracking
technique that uses the solution for the previous frame to
initialize solution estimation for the current frame. The
method adapts to the shape of the object being tracked as
the appearance is loosely modeled by the presence of sepa-
rating edges between the target and the background. Track-
ing is accomplished by passing the eigensolution from the
fine level of the hierarchy of the previous frame to the cur-
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Multilevel: P1 MATLAB Lanczos: P1 Multilevel: P2 MATLAB Lanczos: P2

8 seconds 93 seconds 28 seconds 362 seconds

Figure 3: A comparison between the Multi-level Method and the MATLAB Lanczos solver. Notice that the Lanczos method is shown
to be exceedingly sensitive to the graph generation parameters. In the P1 case the parameters are set as in [13], in P2 the sampling density
in the pixel neighborhoods was increased by 15%, and the significance of the IC cue was decreased by 5%. The figure in the forth column
demonstrates that unconditioned Lanczos iterations fail to converge to a meaningful eigenvector for the problem. In contrast the multilevel
method is far more robust to slight changes in the parameters used to control graph construction.

Figure 4: Simultaneous foreground object tracking and segmentation is achieved by using the continuous solution from the previous
frame to initialize the estimation procedure for the current frame. This results in a tracker that is robust to smooth shape variation in the
tracked object and surroundings. Timing: the target was tracked in a 150 × 150 window over the image sequence. The solution for the
initialization frame, marked with the red dot took, 2 seconds with the multilevel method. The remaining frames all took approximately 1

3

of a second to converge to a solution. (See supplemental video)
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rent frame. This solution is then fit to the current problem
using subspace iterations.

By constraining border pixels in the tracking window to
the background, a foreground tracking algorithm emerges.
Using the techniques described in [14], we integrate group-
ing constraints into the partitioning step by forcing a small
set of known background pixels into one segment. This en-
tails modifying the eigenproblem in Equation 5 by adding a
constraint matrix of the form CT X = 0. This matrix C de-
fines a diffusion over pre-assigned pixel labels, forcing the
target pixels into the foreground while suppressing spurious
segmentations. The constraints in C are easily enforced by
projecting L onto the null space of C.

To initialize the tracker, a region is selected in the first
frame as the target of interest. A simple rectangular con-
straint mask is automatically computed such that border
pixels are constrained to be members of the background
segment. Appropriately scaled instantiations of this mask
are used in the hierarchy to enforce the constraints at each
level. In the context of the tracking problem, the image
region cut from the border pixels is labeled as the target.
Examples of these partitions are given in Figure 5 for an
automobile tracking sequence.

We employ a simple heuristic to cope with temporary
occlusion and solution instability. Restarts of the subspace
tracker are triggered when the foreground segment inter-
sects the constraint mask. This operation involves back-
tracking to the previous frame, widening the target window,
and computing a constrained eigensolution using the Lanc-
zos algorithm at the coarsest level of the pyramid for that
frame. The window is adjusted in size until the new esti-
mate of the foreground segment matches the previous fore-
ground estimate. If a satisfactory segment is not found the
widened window is advanced in the image sequence along
the predicted object trajectory.

6 Conclusion

We present a technique that reduces the computational cost
of graph partitioning while yielding the exact continuous
optimal solution to the spectral relaxation. This is accom-
plished through a hierarchical multilevel method that gen-
erates several reduced graph cut problems. In image seg-
mentation, the method exploits the lattice structure of the
pixel coordinates to define the multilevel method. A coarse
solution is obtained using a standard eigensolver and prop-
agated through increasingly refined problem instances. At
each level the projected solution is refined by subspace it-
erations and then projected onto a further refined problem
instance. The resulting graph-solution hierarchy defined by
interpolation and refinement rules provides a good initial
approximation to the eigenvectors of the Laplacian of the
full graph.

This approach was applied to image segmentation prob-
lems using the normalized cut criterion [11]. The method
yields an order of magnitude speed improvement over cur-
rent sampling techniques. In tracking, solution reuse re-
duces the computation time by an additional order of mag-
nitude.

We are currently extending the multilevel method to ad-
dress large scale spectral clustering problems such as those
posed in [9]. This involves building geometric kernels us-
ing the feature space geometry defined by the data. Simi-
larly, we are examining irregularly sampled anisotropic ker-
nels to preserve graph structure in image and volume seg-
mentation problems. We are evaluating alternative iterative
methods for computing eigenvectors such as the Grassmann
Rayleigh Quotient Iteration [1]. Such methods demonstrate
more rapid convergence than subspace iterations.
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