
Assessing Tracking Performance in Complex Scenarios
using Mean Time Between Failures

Peter Carr
Disney Research

carr@disneyresearch.com

Robert T. Collins
The Pennsylvania State University

rcollins@cse.psu.edu

Abstract

Existing measures for evaluating the performance of
tracking algorithms are difficult to interpret, which makes
it hard to identify the best approach for a particular situa-
tion. As we show, a dummy algorithm which does not ac-
tually track scores well under most existing measures. Al-
though some measures characterize specific error sources
quite well, combining them into a single aggregate mea-
sure for comparing approaches or tuning parameters is not
straightforward. In this work we propose ‘mean time be-
tween failures’ as a viable summary of solution quality —
especially when the goal is to follow objects for as long as
possible. In addition to being sensitive to all tracking er-
rors, the performance numbers are directly interpretable:
how long can an algorithm operate before a mistake has
likely occurred (the object is lost, its identity is confused,
etc.)? We illustrate the merits of this measure by assess-
ing solutions from different algorithms on a challenging
dataset.

1. Introduction

Characterizing the performance of algorithms is critical
for determining which approach is best for a particular sit-
uation. Typically, object tracking algorithms are evaluated
by comparing a set E = {E1, E2, . . . } of estimated object
tracks to the set A = {A1, A2, . . . } of actual object tracks
established from a ground truth data source. The results are
tabulated as false alarms, missed occurrences and identity
swaps; and a collection of measures such as precision, re-
call and multi-object tracking accuracy (MOTA) are derived
from these base statistics [3, 8] (see Fig. 1).

Ideally, these individual measures are somehow com-
bined into a single score to enable direct comparison be-
tween algorithms, as well as searching for optimal parame-
ter configurations through cross validation [7]. When com-
bining into a single score, the relative importance of each
measure can be tailored to the scenario. For instance,
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Figure 1. Assocation. An object A4 moves throughout the scene,
and a tracking algorithm generates estimated object tracks E1 and
E2 (the input detections are not shown). The sampled spatial
locations of all tracks over the four frame duration are shown
as dots, and one-to-one data association is performed indepen-
dently at each frame. The corresponding sequences of associ-
ations are A4 = hE1, E1, E2, ;i, E1 = hA4, A4, ;, ;i and
E2 = h;, ;, A4, ;i. The quality of this tracking solution can be
derived from base statistics (true positives, false positive, false
negatives and identity switches) tabulated from these associations.

surveillance for abandoned luggage would require virtually
no missed detections. However, in the majority of the litera-
ture (and especially when comparing different algorithms),
the standard approach is to treat all errors equally. An addi-
tional complication is that each measure typically has differ-
ent units (and often different magnitudes), so treating each
measure equally without some sort of normalization will re-
sult in a poor aggregate measure.

Surprisingly, the majority of multi-object tracking per-
formance measures do not take the duration of estimated
tracks into account! This omission is striking because the
general tracking problem is to follow a target for as long
as possible without making a mistake. One would expect
the amount of time an algorithm can operate until an er-
ror occurs to be an important factor in determining per-
formance. Many of the established performance measures
are not suited for this purpose because they have a bias
towards shorter tracks (fewer opportunities to make mis-
takes). Because of this bias, low quality tracking solutions
may achieve good performance scores. For example, con-



Method Avg. FP FN ID Prec. Rcll MT PT PL ML Avg. Pur. MOTA MTBF
Dur. Frag. est act std mono

[frames] [-] [-] [-] [%] [%] [%] [%] [%] [%] [-] [%] [%] [-] [frames]

Null 1.0 8458 11888 0 85.1 80.3 64.5 26.1 8.4 2.0 40.1 85.1 1.4 66.3 1.0 0.8
[1] 181.5 3444 18267 71 92.4 69.7 42.9 27.1 14.3 15.8 2.2 81.9 58.7 63.9 129.2 6.7
[2] 139.0 11023 9809 109 82.1 83.8 68.0 15.8 8.4 7.9 2.3 68.4 65.2 65.3 93.5 4.6
[4] 176.5 6857 10931 232 87.8 81.9 67.5 23.6 6.4 2.5 3.0 71.5 65.6 70.2 74.9 5.4
[12] 225.6 7333 11767 474 86.9 80.5 62.6 26.6 7.4 3.4 6.8 60.6 62.3 67.6 51.0 4.8

Table 1. Performance Ambiguity. The performance of various algorithms on the Town Centre dataset. Standard metrics are re-
ported: average estimated track length (frames), the number of false positives, false negatives and identity switches; precision, recall,
{mostly/partially}-{tracked/lost}, average fragmentations per track (switching from ‘tracked’ to ‘not tracked’), purity (predominance of
a single identity) for both estimated and actual tracks, and multi-object tracking accuracy (MOTA). The proposed ‘mean time between
failures’ measure (in standard and monotonic forms) is also reported. Algorithm parameters were not tuned extensively. Remarkably, the
‘null’ algorithm (tracks that are a single frame in duration) achieves very competitive results for all measures except fragmentation and
actual track purity. It is not clear how the standard measures should be interpreted relative to estimated track length.

sider the extreme case of a null tracking algorithm1 which
assigns a unique track identifier to each detection. Each
estimated track is one frame in duration, making it impossi-
ble to have any identity switches. Alarmingly, the majority
of the popular tracking measures [7, 8] give a competitive
score to the result of the null algorithm (see Table 1):

• Precision and recall measure false positives and false
negatives relative to true positives. A good tracking
algorithm should filter out the false detections and fill
in false negatives.

• ‘Mostly tracked’, ‘partially tracked’, ‘partially lost’
and ‘mostly lost’ are four categories by which all
ground truth tracks are classified. The category is as-
signed based on the fraction of the track that was de-
tected — i.e. ‘mostly tracked’ means at least 80% of
the ground truth track was detected. These measures
do not take into account the duration of the estimated
track, or the consistency of the inferred identity.

• Fragmentation measures the number of times a ground
truth track switches from being ‘tracked’ to ‘not
tracked’, and vice versa. There is no direct dependence
on duration, but similar to identity swaps, the amount
of fragmentation tends to increase as tracks get longer.

• Purity measures the frequency of the predominant la-
bel. Tracks with high purity correspond to a single
associated object, while tracks with low purity asso-
ciate to multiple objects. This measure can be applied
to either the estimated or actual object tracks.

• MOTA describes the aggregate error from false and
missed detections, as well as identity swaps. Although
identity swaps do not directly reflect the length of an
estimated track, the number of identity swaps gener-
ally increases with longer estimated tracks.

1The null tracking algorithm is analogous to a null detection algorithm
that simply predicts the predominant class (such as a patient not having a
rare disease).

The existing measures are rarely able to distinguish a
clear winner amongst competing algorithms. In part, this is
because none of the measures are adequately sensitive to all
error sources. Furthermore, there is no agreed upon method
for combining the different measures. Successfully follow-
ing an object for a sustained period of time may not be of
primary importance in all tracking scenarios, and in these
situations, established performances measures may suffice.
However, as benchmark data sets have grown in size and
complexity, the existing measures have struggled to differ-
entiate the performances of various algorithms. As research
progresses in sustained long term object tracking, a perfor-
mance measure which can assess the duration under which
objects can be followed successfully is needed.

In addition to being discriminative, a good performance
measure should also be predictive. Ground truth data may
be available in laboratory settings, but it is unavailable in
the field. Ideally, a measure should say something about
how an algorithm is expected to perform on future unseen
(but representative) data. For example, the precision of an
object detector describes the probability that an object is
actually present if a detection is made on new data. Ideally,
measurements of tracking performance should have similar
predictive interpretations.

To address these shortcoming, we propose a new eval-
uation technique which combines all of the tracking er-
ror sources into a single number that reflects the average
amount of time a tracking algorithm can successfully fol-
low an object without making a mistake: the mean time
between failures (MTBF). The term is borrowed from the
field of reliability engineering [9]. Our empirical results
show MTBF is an effective performance measure which
generates clear differentiations between various tracking so-
lutions. Furthermore, the measure has a clear interpretable
meaning, and more importantly, is predictive about future
performance: MTBF is an estimate of how long a tracking
algorithm should be able to follow an object before it drifts
away or confuses it with a different target. Compared to the



standard measures, computing MTBF requires an additional
run length encoding stage which is trivial to implement. Fi-
nally, we prove that a variant of MTBF is monotonic; guar-
anteeing that a reduction in tracking errors (false positives,
false negatives and identity switches) results in a better (or
at least unchanged) performance measure.

2. Mean Time Between Failures
In the case of single object tracking, the performance

measure is fairly straightforward: how long can a target be
followed successfully? The idea of failure rate (the num-
ber of times a tracker must be manually re-initialized) was
recently proposed for single object tracking [11]. In multi-
target tracking, initializations and terminations occur auto-
matically, making failure rate analogous to fragmentation.
Instead, we propose the idea of “errorless duration”, which
is applicable to both single and multi-target tracking do-
mains. For simplicity, we assume all errors are equally im-
portant and compute the mean time between any type of
failures. But, we will also highlight variants of the measure
for different subsets of errors (identity switches, and iden-
tity switches and fragmentations).

Computing the mean time between failures for object
tracking requires two inputs: a set A = {A1, A2, . . . }
of actual object tracks (the ground truth), and a set E =

{E1, E2, . . . } of estimated object tracks (a tracking solu-
tion). Both sets use the same representation of a track: a
unique identifying label paired with a sequence of times-
tamped spatial locations (which could be on the image plane
or ground plane). Like [5], we require each track to be a sin-
gle continuous temporal span.

Similar to other tracking measures, the first step for de-
termining the mean time between failures is to perform data
association between the estimated and actual object trajec-
tories. Usually, this is accomplished by evaluating the spa-
tial discrepancy between the sampled locations of each es-
timated track and actual track. Unlike [10], our formulation
does not allow many-to-one or many-to-many associations,
so we employ the Kuhn-Munkres (Hungarian) algorithm at
each time instant independently. Furthermore, unlike [3],
we do not include a greedy tracking stage before solving the
linear assignment problem to minimize the number of iden-
tity switches. Instead, we assume a good tracking solution
should generate an estimated track which is indeed closest
to the actual object track. Once the bi-directional matching
between the estimated tracks and the actual object tracks has
been established at each time instant, the base statistics (the
number of true positives, false positives, false negatives, and
identity switches) for the standard tracking measures can be
deduced directly from the association data. In our proposed
approach, we first extract a useful intermediary representa-
tion from the associations, and then compute the standard
statistics.

From the association data, one can extract the sequence
Ai of labels representing the mapping between the i

th

ground truth actual object track and its associated estimated
object track at each time instant (Smith et al. [10] call these
sequences of labels “configuration maps”). For example,
Figure 1 shows a tracking result for a hypothetical sce-
nario. The sequence of labels A4 = hE1, E1, E2, ;i means
ground truth track A4 was associated to estimated track E1

for the first two frames, estimated track E2 for the third
frame, and was not associated to any estimated track in the
fourth frame (i.e. a false negative). In a similar fashion, a
sequence Ej of labels can be computed for each estimated
object track, where these labels represent which actual ob-
ject track was associated at each time instant. In this direc-
tion, the null association ; represents false positives. From
these label sequences, the standard counts of true positives,
false negatives and false positives can be computed (which
are respectively 3, 1 and 5 for Fig. 1).

All of the classic tracking measures can be derived from
an arbitrary set L = {L1,L2, . . . } of associated labels.
Generally, the measured performance will be different de-
pending on which set of tracks is analyzed: A or E . We will
discuss this aspect further, after explaining how standard
measures and our proposed mean time between failures can
be derived from L.

For simplicity, we will explain how performance mea-
sures are calculated for a single sequence Li of association
labels. The aggregate performance across the entire set L is
straightforward (often summing or averaging over the set).
For an input sequence of associated labels Li, the periods of
consistent identity assignment are easily determined from
the run length encoding

RLE(Li) = hRi,1,Ri,2, . . . ,Ri,Ki, (1)

where Ri,k = [`k, Dk] is the k

th run and represents label
`k repeated Dk times. The core tabulated measures can be
computed directly from the run lengths

True Positives =

X

k

Dk[`k 6= ;], (2)

False Positives/Negatives =

X

k

Dk[`k = ;], (3)

Identity Transitions = K � 1. (4)

The number of true positives is the same regardless of
whether A or E is analyzed. However, only E determines
the number of false positives, and only A determines the
number of false negatives.

Identity transitions occur whenever two temporally con-
secutive associations do not have the same label. If one
of the labels is null, then the transition is a tracking frag-
mentation (where the tracking solution transitions from
‘tracking’ to ‘not tracking’ or vice versa); otherwise it is



an identity switch. Identity switches can also occur in non-
consecutive frames if there are null labels in between. For
example, the sequence h1, ;, 2i has two fragmentations and
one identity switch, while the sequence h1, ;, 1i has two
fragmentations and no identity switches. Identity transitions
are the upper limit for both identity switches and tracking
fragmentations (identity switches and tracking fragmenta-
tions are not independent subsets)

Id Trans = max(Id Switches,Tracking Frags). (5)

Often, fragmentation is computed for the ground truth
tracks A. From a prediction point of view, it is more use-
ful to gauge identity swaps in terms of E because that re-
flects how often tracks outputted by a tracking algorithm
confuse the identity of one target for another. To illustrate
how these measures are dependent on which set of tracks
is analyzed, consider the situation in Figure 1. The actual
object tracks A have 1 fragmentation and 1 identity switch,
whereas the estimated tracks E have 3 fragmentations and 0
identity switches. Reporting “identity switches” is ambigu-
ous unless the reference set of tracks is specified. In our
case, the values in Table 1 were computed using identity
switches computed for the estimated object tracks.

From these base statistics, the standard measures of pre-
cision, recall, {mostly/partially}-{tracked/lost} and MOTA
can be calculated. However, as we will now explain, the dis-
tribution of the run lengths provides insightful information
about performance.

2.1. Properties of Mean Time Between Failures

Each run with a non-null label represents a period of er-
ror free tracking. The multiset F(Li) = {Dk|`k 6= ;}
describes the observed times between errors. For conve-
nience, one can summarize the distribution of times by its
mean value2

MTBF =

1

|F|
X

k

Dk[`k 6= ;], (6)

but other moments could be computed as well. By defini-
tion, the MTBF of an empty set is zero.

The example sequence Li = h1, 1, 1, 2, ;i has a run
length encoding RLE(Li) = h(1, 3), (2, 1), (;, 1)i. The
mean time between failures would be 3+1

2 = 2 frames (runs
with `k = ; are omitted).

Sensitivity to All Error Sources MTBF measures the av-
erage duration of consistent identity associations (which
may be null or non-null labels). Identity transitions oc-
cur because of instantaneous identity switches or tracking
fragmentations (which may coincide with indirect identity
switches). To the best of our knowledge, MTBF is the
first performance measure that is simultaneously sensitive
to both identity switches and tracking fragmentations. The

2A reference C++ implementation is included as supplemental material.

standard measures are sensitive to only one of these error
sources at most. If desired, a variant which is only sensi-
tive to identity swaps can be computed: when omitting runs
with null labels, consecutive runs with the same label are
merged — eliminating the effect of fragmentations).

Normalized Mean time between failures for a single track
is limited to the duration of the track. As a result, one can
normalize MTBF to [0.0, 1.0] (if desired) by scaling by the
average track length. Normalized MTBF may be useful for
comparing performance across datasets with different un-
derlying motion characteristics — i.e. targets which are vis-
ible in the scene for long periods of time compared to other
scenarios where targets are only visible briefly.

Asymmetric The computed mean time between failures
will generally be different for A and E . When analyzing the
actual object tracks A from the ground truth, MTBF charac-
terizes how well we expect the tracking algorithm to be able
to follow the object without losing it or misidentifying it.
When analyzing E , MTBF describes the expected amount
of time the tracker can follow an object before drifting away
or misidentifying it. The distinction is subtle, and is analo-
gous to the relationship between precision/recall. Typically,
the harmonic mean of precision and recall is used to specify
the aggregate performance (since they are rates). Mean time
between failures is inversely proportional to the failure rate
� [9]. The harmonic mean of �A and �E is the arithmetic
average of mean times between failures for A and E

MTBFAE =

1

�AE
, (7)

=

�A + �E
2�A�E

, (8)

=

1

2

MTBFA +

1

2

MTBFE . (9)

As a result, the best way to concisely summarize the tem-
poral reliability of a tracking algorithm is to quote the arith-
metic mean of the MTBF measures calculated for estimated
object tracks and actual object tracks. However, more thor-
ough descriptions about a tracking algorithm’s performance
can be computed from the distribution of errorless tracking
intervals (such as higher order moments of the distribution).

Not Monotonic Leichter and Krupka [6] argue that a
good performance measure should be monotonic with re-
spect to error rates, or more precisely, the reduction of false
positives, false negatives or identity switches should not
cause the tracking performance measure to decrease. Al-
though this relationship tends to hold for MTBF in practice,
there are circumstances where a reduction in errors could
cause MTBF to decrease.

If the number of false negatives is reduced, then some
null elements in one or more Ais will become non-null. Of-



Scenario True False Id. Total MOTA MT/PT/ Frag. Purity MTBF
Associations Pos. Neg. Sw. Errors PL/ML standard monotonic

A1 = [E1 E1 E1 E1 E1] 5 0 0 0 100.0 MT 0 1.0 5.00 5.00
A2 = [E1 E1 E1 E2 E2] 5 0 1 1 80.0 MT 0 0.6 2.50 2.50
A3 = [E1 E1 E1 E2 ; ] 4 1 1 2 60.0 MT 1 0.6 2.00 1.33
A4 = [E1 E1 E2 E1 E2] 5 0 3 3 40.0 MT 0 0.6 1.20 1.20
A5 = [E1 E1 ; E2 ; ] 3 2 1 3 40.0 PT 3 0.4 1.50 0.75
A6 = [ ; E1 ; E2 ; ] 2 3 1 4 20.0 PL 4 0.2 1.00 0.40
A7 = [ ; ; ; ; ; ] 0 5 0 5 0.0 ML 0 0.0 0.00 0.00

Table 2. Synthetic Examples. Performance measures for seven scenarios involving a single actual object trajectory (ground truth) and two
estimated object trajectories (tracking solution). Identity transitions have been partitioned into identity swaps and fragments. Multi-object
tracking accuracy (MOTA) exhibits a clear trend in quality of the tracking solutions. The {mostly/partially}-{tracked/lost} classification
as well as the fragmentation count are both insensitive to misidentification errors, and do not adequately characterize the quality of the
tracking solution. Purity does not take into account the internal cohesiveness of labels, giving tracks A2 and A4 the same score (where A2

is clearly a better tracking solution). The standard formulation of mean time between failures gives a similar quality ranking as MOTA, but
with a slight variation in preferences between low quality solutions. The monotonic variant of MTBF tends to over penalize false positives
and negatives, and has a different preference for the ordering of A4 and A5 (the monotonicity property places no constraint on scores
when the number of errors is equal; hence A3 has a higher MTBF than both A4 and A5, and A6 has a lower MTBF than both).

ten, the switch to a non-null label is consistent with its im-
mediate predecessor or successor, which results in a slightly
longer run and an increase in MTBF. However, if the new
non-null label is not the same as its predecessor and succes-
sor, then a new run of length 1 is created, which most likely
will make MTBF go down (unless it is  1 already).

If monotonicity is desired, a more strict definition of
MTBF can be used. Instead of run length encoding all la-
bels, the monotonic variant only run length encodes non-
null labels. For example, the sequence h1, 1, ;, ;i would
be run length encoded as h(1, 2), (;, 1), (;, 1)i. When con-
structing the multiset F , the value Dk is added for every run
involving a non-null label, and the value 0 is inserted for ev-
ery run involving a null label (which by definition is always
a single frame in duration because null labels were not run
length encoded). Effectively, null labels result in errorless
durations of zero frames.

Proposition 1. MTBF is a monotonic measure if each null
label corresponds to zero time between failures.

Proof. If the number of false negatives decreases, then one
or more errorless durations of zero will be replaced by ei-
ther: (1) extending an existing non-null labeled errorless
duration by one frame or (2) creating a new non-null run
with an errorless duration of one frame (which may induce
additional identity switches). In both cases, the MTBF will
not decrease. The same arguments apply to E for the case of
reducing the number of false positives. Finally, if the num-
ber of identity swaps is reduced, then either: (1) consecu-
tive non-null runs are merged into a single longer run (in-
creasing MTBF) or (2) non-null runs separated by a null run
change to the same label (keeping MTBF the same).

We have found the more strict definition of MTBF to be

less useful in practice because its distribution of errorless
durations is heavily skewed towards zero, and these errors
are well represented in established measures such as pre-
cision and recall. Furthermore, because runs of null labels
are omitted from the computation of standard MTBF, nor-
malizing by the average track length will still reflect errors
arising from false positives and false negatives. For exam-
ple, consider two tracking algorithms where one is tuned to
be more conservative at terminating tracks. When the ob-
ject is lost, the first algorithm will terminate its track imme-
diately, while the second will extrapolate forwards in time
and suffer false positives until it is convinced it is necessary
to terminate the track. Assuming both algorithms had the
same solution up to the point that the object was lost, the
absolute MTBF scores would be the same. However, since
the second algorithm generated a longer track (with false
positives at the end), when interpreting MTBF relative to
estimated track length, the second algorithm will generate a
lower fractional length.

Empirical Table 2 contains performance measures for
seven toy examples involving a single actual object trajec-
tory (from the ground truth) and two estimated object trajec-
tories (from a tracking algorithm). The standard measures
give reasonable assessments to each of the solutions, but
few have sufficient discrimination power to reflect which
tracking solutions are better than others.

The multiple object tracking accuracy (MOTA) gives a
reasonable measure of performance for each of the tracks
(in this case there are no false positives because the ex-
ample is only evaluating the quality by which the tracking
algorithm was able to follow the actual objects). Because
MOTA is indifferent to fragmentations it assigns the same
scores to A4 and A5.



The classification of {mostly/partially}-{tracked/lost} is
invariant to the number of identity swaps, and so is the count
of fragmentations (switching from ‘tracked’ to ‘not tracked’
and vice versa). As a result, these measures are not al-
ways reliable, such as giving situations A1 and A4 the same
score. Similarly, the purity measure [10] does not take into
account the cohesiveness of associations within the track,
and gives equal preference to A2 and A4.

The standard formulation of MTBF mostly agrees with
the rankings of MOTA. However, MTBF is sensitive to frag-
mentation errors (MOTA is not) and both the standard and
monotonic variants have preferences for how A4 and A5

should be ordered. The monotonic variant tends to over em-
phasize errors from false negatives and positives (which re-
sult in zero frame errorless durations) which is why it ranks
A4 ahead of A5.

3. Experiments
For the hypothesized situations in Table 2, both MOTA

and MTBF give reasonable scores, although MOTA is in-
different to tracking fragmentation errors. We now com-
pare MTBF to the established tracking performance mea-
sures on a larger dataset from a real scenario using a variety
of solutions generated by different data association algo-
rithms. Our experiments are designed to assess a measure’s
ability to distinguish the quality of different tracking solu-
tions. We are not focusing on which algorithm generates
the best solution, and have not adjusted parameters to maxi-
mize each algorithm’s performance. The quality of the gen-
erated solutions should not be considered a good proxy for
algorithm performance. Before presenting each measure’s
assessments of the various solutions, we first describe the
scenario and how the actual object tracks are established.

3.1. Ground Truth

We use the publicly available Town Centre dataset [1].
We are interested in estimating the trajectories of objects
on the ground plane, and not bounding boxes of heads in
the image plane. As a result, we define a region of inter-
est on the ground plane in which all individuals should be
fully visible unless they are occluded by another person.
To translate the published ground truth of bounding box
head locations to (x, y) locations on the ground plane, we
manually estimated the height of each individual. During
this process we noticed errors in the published annotations:
paths of some individuals were annotated as unconnected
segments, and identities of some pedestrians changed mid-
track. We corrected annotations as necessary3 which re-
duced the total number of tracks from 228 to 203. Further-
more, the average track length increased from 262.4 frames
to 297.5 frames (the video is 25 fps).

3Our revised ground truth is included as supplementary material.

Figure 2. Projective Uncertainty. The region of interest is demar-
cated with a red line. (left) Within the ROI, any person’s head and
feet should be visible (unless occluded by another object). The
uncertainty of a spatial location on the image plane is modeled
as an isotropic 2D normal distribution, exemplified by concentric
circles. (right) Propagating the uncertainty through the projective
transform results in an error distribution on the ground plane which
is not normally distributed (the ellipses would need to be concen-
tric). Because Mahalanobis distances are only valid for normal
distributions, we associate actual object locations to estimated ob-
ject locations based on image plane distance.

3.2. Associations

Although we track objects on the ground plane, we per-
form data association on the image plane. As Figure 2 il-
lustrates, the non-linear projective transform of the cam-
era means errors that are normally distributed on the image
plane are not normally distributed on the ground plane (the
ellipses on the ground plane are not concentric).

The first step in performance assessment is to match the
input set E of estimated object tracks to a reference set A
of actual object tracks (from the ground truth). In our ap-
proach, we sample both sets of tracks over all time instants
to generate a set Et of estimated object locations at each
time t, as well as a set At of actual object locations. Both
sets of ground plane locations are then projected into the
image plane. We then compute the image plane distances
between all possible pairings of estimated and actual image
plane locations. We use the Kuhn-Munkres (Hungarian) al-
gorithm to determine the optimal association of estimated
image plane locations to/from actual image plane locations
based on the squared image plane distances (since the dis-
tances are distributed according to a Rayleigh distribution).
This scheme is used for computing both MTBF and MOTA.

The matchings are subject to an upper feasible distance
limit. If no good matching can be found then the sampled
location is either a false positive (if an estimated location
has no suitable actual location) or a false negative (if an ac-
tual location has no suitable estimated location). In practice,
the spatial uncertainty of a detection algorithm should be
characterized through repeated trials under the same stimu-
lus. Because that methodology isn’t applicable in this situ-
ation, we employ a heuristic to estimate the maximum fea-
sible distance. We assume the detector is reasonably reli-
able, which means the estimated/actual object location pair
with the smallest image plane distance is probably the cor-
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Figure 3. Feasible Distance Limit. In order to associate an es-
timated object location with an actual object location, the image
plane distance must be below the feasible distance limit. To deter-
mine that value, we search for the decision threshold in a binary
classifier which maximizes the classifier’s accuracy when predict-
ing outcomes for the smallest and second smallest distances.

rect association, and the pair with the next smallest distance
is usually not a correct association. We can define a bi-
nary classifier using an above/below threshold test to pre-
dict whether a particular pair of estimated and actual ob-
ject locations should be associated. For overly small thresh-
olds, both the smallest and second smallest distances will
not be considered feasible, whereas for overly large thresh-
olds, both the smallest and second smallest distances will
be considered feasible. In practice, we want the smallest
distance to be feasible, and the second smallest distance to
be infeasible. We determined a feasible distance limit of 43
pixels by searching for the threshold which maximized the
binary classifier’s accuracy (see Fig. 3).

3.3. Performance Measures

Table 1 lists the performance of different tracking solu-
tions that have been published for the Town Centre dataset.
The MOTA scores are very similar — including the solution
of the null tracking algorithm! The average length of the
estimated tracks is somewhat consistent as well (except for
the null solution, obviously). From these two measures, it
is difficult to determine whether one solution is better than
another. The mean time between failures has a fairly big
spread. At the low end, one tracking algorithm can oper-
ate for about 4s before likely making a mistake, while at
the upper end, another algorithm is expected to operate for
6s before making an error. The monotonic variant suggests
[1] and [4] have nearly equivalent performance, while [2]
appears to be better.

Figure 4 shows one minus the cumulative distributions of
errorless durations for the three tracking solutions. One mi-
nus the cumulative distribution illustrates how the solution
from [1] is able to track an object for a substantially longer
time for a given error tolerance. For example, after about 75
frames, solutions [2] and [4] have a 40% chance of making
at least one error. The method from [1], on the other hand, is
able to operate for approximately 125 frames before reach-
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Figure 4. Reliability. One minus the cumulative distribution of
errorless durations is a useful way for visualizing the reliability of
an algorithm, and is equivalent to the probability of tracking for
time t without making an error. Ideally, the data should follow an
exponential distribution. For reference, reliability curves of cor-
responding to MTBFs of 100 (solid line) and 30 (dotted line) are
plotted. The predictive nature of MTBF is directly interpretable
from the plot. For example, [1] can operate for approximately 125
frames before there is a only 40% chance of not making a mistake;
whereas [2] and [4] can only operate for about 75 frames before
reaching the same probability of an error having occurred.

ing the same 40% chance of making at least one error. To
make this distinction more clear, we can plot the reliability
function which describes the probability of no error occur-
ring after t seconds assuming a fixed error rate � =

1
MTBF

R(t) = exp (��t) . (10)

For reference, two reliability curves are plotted: the solid
line represents the expected distribution for a MTBF of 100
frames, and the dashed line represents 30 frames. These
values roughly correspond to the performances of the three
tracking solutions in Table 1 for both the standard version of
MTBF and its monotonic variant. The MTBF for 30 frames
does not represent the actual distribution of the non-zero er-
rorless durations, because it is accounting for a large spike
at t = 0 (not shown) arising from false negatives and false
positives. In reliability engineering terms, MTBF is used
to characterize the expected failure rate during the useful
life period [9]. It specifically ignores the higher error rates
during the early life and wear out periods, which in object
tracking terms is analogous to track initialization and ter-
mination. By interpreting standard MTBF scores relative to
the average duration of an actual object track (297.5 frames
in this case), the errors arising from false positives and false
negatives are still accounted for. The advantage of this per-
spective (normalized standard MTBF) is that it avoids the
over emphasis of false positives and negatives present in the
monotonic variant, and treats identity switches and tracking
fragmentations as equally important errors compared to not
following a target or accidentally following something that
is not an object of interest.
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Figure 5. Precision Sensitivity. The tracking solutions of Table 1
are re-evaluated for different spatial error tolerances (see Fig. 3).
MOTA scores (left) are mostly determined by the input set of de-
tections, whereas MTBF (right) provides good separation between
solutions generated from the same set of detections.

Spatial Precision When [11] proposed failure rate as a
performance measure for single-target trackers, the authors
noted that spatial precision (bounding box overlap) is a
complementary measure. Because multi-object tracking au-
tomatically determines initializations and failures, we plot
curves of MOTA and MTBF as a function of feasible im-
age plane distance (see Fig. 5). For example, the MTBF of
[2] plateaus at a spatial precision of 25 pixels, whereas [4]
achieves a similar performance, but at 55 pixels, implying
the localization accuracy of these detections is much lower.

3.4. Correlation Analysis

In addition to the tracking solutions listed in Tab. 1, we
generate additional solutions by varying the parameters of
[12] (true positive rate, true negative rate and initializa-
tion/termination probability) such that the average duration
of estimated tracks was uniformly sampled. The correlation
between different measures across all tracking solutions is
shown in Fig. 6. Compared to MOTA, MTBF exhibits sig-
nificant negative correlation with all three fundamental er-
ror sources. There is strong positive correlation with pre-
cision, recall and mostly tracked; and negative correlation
with partially tracked, partially lost and mostly lost, as well
as fragmentation. There is positive correlation with purity
and MOTA. Only the anti-correlations with partially lost
and mostly lost are not significant (p > 0.05). In contrast,
MOTA and purity have minimal correlation with false pos-
itives and identity switches (because the number of false
negatives is substantially larger). Furthermore, MOTA only
has significant correlation (p < 0.05) with precision, recall,
mostly tracked and purity (estimated and actual).

4. Summary
Although it is important to have specific measures for

each type of error [6], a single aggregate measure is use-
ful for comparing algorithms, as well as tuning parameters
through cross validation. When feasible, individual mea-
sures should be aggregated through a loss function crafted
for the particular scenario. However, customized loss func-
tions are not always practical. Our approach is to think of
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Figure 6. Correlation Analysis. The correlation between the dif-
ferent measures (see Tab. 1) aggregated over various tracking solu-
tions. MTBF has significant correlation (p < 0.05) with all mea-
sures except PL and ML. MOTA has negligible correlation with
track duration.

errors as events, and to characterize the expected amount
of time between events. As we have shown, mean time be-
tween failures has many useful properties:

• The computed numbers are intuitive, and have a pre-
dictive ‘reliability’ interpretation (see Fig. 4).

• Our empirical evidence suggests the measure can pro-
vide good discriminability between different tracking
solutions (see Fig. 5).

• The measure is equally sensitive to all types of tracking
errors (see Fig. 6).

• If desired, variants are available with sensitivity spe-
cific to different subsets of errors: (1) identity switches
only, (2) identity switches and fragmentations, and (3)
all error sources. The full measure is monotonic with
respect to the three fundamental errors source: false
positives, false negatives and identity switches; mak-
ing it useful for cross-validation.

Mean time between failures addresses many of the weak-
nesses that are present in the established set of measures
for assessing tracking performance — especially if the ul-
timate goal is to follow targets for as long as possible. As
research in visual object tracking continues to pursue more
complex scenarios, we believe MTBF and an inspection of
the distribution of errorless durations will be a useful tool
for understanding how well algorithms perform in different
situations.
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