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Abstract. We present a novel feature screening algorithm by deriving
relevance measures from the decision boundary of Support Vector Ma-
chines. It alleviates the “independence” assumption of traditional screen-
ing methods, e.g. those based on Information Gain and Augmented Vari-
ance Ratio, without sacrificing computational efficiency. We applied the
proposed method to a bottom-up approach for automatic cervical cancer
detection in multispectral microscopic thin PAP smear images. An initial
set of around 4,000 multispectral texture features is effectively reduced
to a computationally manageable size. The experimental results show
significant improvements in pixel-level classification accuracy compared
to traditional screening methods.

1 Introduction

Finding abnormal cells in PAP smear images (Fig. 1) is a “needle in a haystack”
type of problem, which is tedious, labor-intensive and error-prone. It is there-
fore desirable to have an automatic screening tool such that human experts
are only called for when complicated and subtle cases arise. Most researches
on automatic cervical screening extract morphometric/photometric features at
the cellular level in accordance with the “Bethesda System” rules [1]. However,
accurate segmentations of cytoplasm and nucleus on cancer images are rather
difficult due to the presence of blood, inflammatory cells, or thick cell clumps.

Using a micro-interferometric spectral imaging setup, we have obtained a
set of multispectral Pap smear images. The wavelengths range from 400 nm to
690 nm, evenly divided into 52 bands. In [2], we propose a bottom-up approach
to automatically detect cancerous regions in such images without the require-
ment of accurate segmentation. Our approach takes advantage of both the local
multispectral and textural properties by learning a spatially-homogeneous dis-
criminative filter. Cancerous regions are then detected from the filter output
through a relatively simple procedure.

There are two critical issues that must be addressed in such a scheme: (1)
what features should be extracted from multispectral images, and (2) how to re-
move irrelevant and/or redundant features from a pool of thousands of potential
features to locate a feature subset that is well balanced between performance
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Fig. 1. Sample Pap smear im-
ages.
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Fig. 2. Proposed bottom-up detection scheme.

and compactness. For the first issue, we have identified a feasible feature space
of about 4,000 dimensions that well captures local multispectral and texture in-
formation. For the second issue, given that 4,000 dimensions is still intractable
for traditional feature selection methods, we have employed two simple screening
measures, i.e. Information Gain (IG) and Augmented Variance Ratio (AVR), to
rule out irrelevant features. However, as each feature is evaluated independently,
such screening methods may fail to capture all highly discriminative feature
subsets, which are composed of individually less discriminative features.

In this paper, we present a novel feature screening algorithm by deriving
relevance measures from the decision boundary of Support Vector Machines [3].
The proposed relevance measures have several advantages: 1) As derived simul-
taneously for all dimensions, they do not only focus on single dimension as most
existing measures do; 2) As the maximum margin boundary of SVM has been
proven to be optimal in a structural risk minimization sense, they may better
indicate the discriminative power of features; 3) As efficient routines for SVM
training are available that can readily deal with huge number of features and
samples, they do not sacrifice in computational cost. Our experimental results
show significant improvements in pixel-level classification accuracy by using the
proposed method.

2 Detection System Overview

A flowchart of the proposed bottom-up detection scheme is given in Figure 2.
Here we summarize the main steps.
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Preprocessing. We first segment cells from the background, which is much
easier than traditional nuclei/cytoplasm segmentation. Then we normalize all
band images by subtracting the spectral signature of the image background.

Feature Extraction. For each pixel, we extract various types of image features
including: 1) Statistics of pixel intensity; 2) Daubechies 2 and Daubechies 16
asymmetric orthogonal wavelets; 3) Biorthogonal wavelet; and 4) Gabor wavelet.
This procedure is applied to every band, resulting in a very high dimensional
multispectral image feature set.

Feature Screening. The initial feature set is pruned by the proposed SVM
based screening algorithm to remove those features irrelevant to the detection
task. This is the main focus of the paper, and will be discussed in detail in Sec-
tion 3. To further eliminate feature redundancy, Sequential Backward Selection
(SBS) is applied to the surviving features of the screening procedure.

Discriminative Filtering. Let x be the final n-dimensional feature vector of
a pixel after SBS selection. For each class (cancerous or normal), a modified
version of quadratic discriminant is defined as

g(x) =
k∑

i=1

1
λi

[
ϕT

i (x − µ)
]2

+
n∑
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1
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[
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+ ln

[
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k∏

i=1

λi

]
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where µ is the class mean, {λi, ϕi} are the i-th eigenvalue and eigenvector of
covariance matrix Σ, λ1 ≥ λ2 ≥ · · · ≥ λn, and β is a positive constant. The
discriminative filter output is then computed as h(x) = gnormal(x) − gcancer(x).

Region Detection. Based on the continuous output surface h(x) from dis-
criminative filtering, cancerous regions can be located by a relatively simple
procedure (see Fig. 3 for example): 1) Smooth H = {h(x)} with a Gaussian
filter; 2) Find all local maxima mi in H, and their corresponding effective re-
gions Ri, defined as the points immediately around mi with values above a fixed
fraction (0.5) of h(mi); 3) For each Ri extract a geometric feature G = C/L,
where C is the circumference of Ri, L is the distance from mi to the boundary.
Prune those Ri if h(mi) < 0.5 maxi h(mi) or G < 2, and generate the candidate
region set; 4) Merge candidate regions that are overlapping.

3 SVM Based Feature Screening

Given a set of features in a classification problem, a basic question in many learn-
ing tasks is: what is the best feature subset for classification purpose? Although
many feature subset selection methods have been proposed [4,5], few of them
can be directly applied to domains with more than 100 dimensions. The huge
feature dimension (near 4,000) and sample complexity (over 100,000) in our task
make them computationally prohibitive. Alternatively, we present a new feature
screening algorithm by deriving relevance measures from the decision boundary
of Support Vector Machine. Features are ranked according to these measures,
and a subset is then selected via some statistical significance test.
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(a) (b) (c) (d) (e) (f)

Fig. 3. An example of cancerous region detection. (a) Original image. (b) Scaled output
surface from discriminative filtering. (c) Gaussian smoothing of (b). (d) Local maxima
points found in (c). (e) Contours of candidate cancerous regions. (f) Merged result.

The SVM decision function of a two-class problem can be written as

h(x) = w · Φ(x) + b =
∑n

i=1
αiyiK(x, xi) + b (2)

where xi ∈ R
d is the training sample, and yi ∈ {±1} is the class label of xi. A

transformation Φ(·) maps the data points x of the input space R
d into a higher

dimensional feature space R
D, (D ≥ d). The mapping is performed by a kernel

function K(·, ·) which defines an inner product in R
D. The parameters αi ≥ 0 are

optimized by finding the hyperplane in feature space with maximum distance to
the closest image Φ(xi) from the training set, which reduces to solving a linearly
constrained convex quadratic program. In the general case of nonlinear mapping
Φ, SVM generates a nonlinear boundary h(x) = 0 in the input space.

Given any two points z1, z2 ∈ R
d such that h(z1) h(z2) < 0, a surface point

s = αz1 + (1 − α)z2, α ∈ [0, 1], can be found by solving the following equation
with respect to α :

h(s) = h (αz1 + (1 − α)z2) = 0 (3)

The unit normal vector N(s) at the boundary point s is then given by

N(s) = ∇h(s)/‖∇h(s)‖ (4)

where ∇h(s) = ∂h(s)/∂s =
∑n

i=1 αiyi ∂K(s, xi)/∂s. N(s) identifies the orienta-
tion in the input space along which the projected training data are well sepa-
rated locally around the neighborhood of s. Therefore, the orientation difference
between N(s) and any direction u can be used to measure the local discrim-
inative relevance for that direction at s. Formally, we measure this difference
by |uT N(s)|, or equivalently uT N(s)N(s)T u. To summarize all the local feature
relevance information, we compute the decision boundary scatter matrix as

M =
∫

B
N(s)NT (s)p(s) ds (5)

and a global relevance measure for direction u as uT Mu. When sample-size is
finite, M can be replaced by the sample estimate M̂ =

∑l
i=1 N̂(ŝi) N̂(ŝi)T /l,

where ŝi are l points sampled from the estimated decision boundary. This global
relevance measure can be readily extended to multi-category problems by re-
peating the procedure in either one-vs-all or pairwise mode. Now we summarize
the SVM based feature screening algorithm as follows.
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Input: n sample pairs {(xi, yi)}n
i=1, where xi ∈ R

d and yi ∈ {k}Q
k=1.

Output: d nested feature subsets S1 ⊂ S2 ⊂ . . . ⊂ Sd such that dim(Sm) = m.
Algorithm:

S1 For k = 1 to Q

S2 Divide the n samples into two subsets T+ = {xi|yi = k} and T − = {xi|yi �= k}.
Learn a SVM decision function h(x) using T+ and T −.

S3 Sort the n samples in ascending order by the absolute function output values |h(xi)|.
Denote the subset consisting of the first r samples as T ′.

S4 Select l pairs of points {(zj
1, z

j
2)}l

j=1 from T ′ randomly such that h(zj
1) h(zj

2) < 0. For
each pair solve equation (3) to an accuracy of ε, and thus get l estimated boundary
points {ŝj}l

j=1.

S5 Compute the unit surface norm N̂(ŝj) at ŝj according to equation (4), and estimate
the decision boundary scatter matrix as M̂k =

∑l
j=1 N̂(ŝj)N̂(ŝj)T .

S6 End (For k = 1 to Q)

S7 Compute M̂ =
∑Q

k=1 M̂k/Q, and denote its diagonal value as {λ̂j}d
j=1.

S8 Sort feature directions {uj}d
j=1 descendingly by {λ̂i}d

j=1. Let Sm = {usort
j }m

j=1.

Note that first, we prune those training samples far away from the decision
boundary in locating the boundary points. This helps to reduce computational
cost and suppress the negative influence of outliers. Second, we adopt the one-vs-
all approach for solving Q-class problems with SVMs. Totally Q classifiers need
to be trained, each of which separates a single class from all remaining classes.
Third, the complexity of the algorithm can be controlled by several parameters
including l, the number of boundary points to be sampled, and ε, the accuracy
of the root to equation (3). Our experience suggests that the algorithm is not
very sensitive to the choice of these parameters. Finally, we have used p-degree
polynomial kernels in our experiments, where p = 2.

It can be proven that a feature u is irrelevant if and only if uT Mu equals zero.
In theory we can prune all irrelevant features via this screening method. How-
ever, inherent uncertainty in our estimation prevent us from doing so. A more
practical reason is that, features’ contribution to discrimination may be unevenly
distributed that the subset dimension can be significantly reduced while achiev-
ing almost the same accuracy. Therefore model selection technique is required in
order to decide an appropriate subset. This problem will not be discussed in this
paper, but we want to point out that nested subsets generated by SVM based
screening can easily facilitate such explorations.

4 Experiments and Analysis

We evaluated the proposed SVM based screening algorithm and the resultant
cervical cancer detection system on a multispectral PAP smear image database
containing 40 images (each has 52 spectral bands) with a total of 149 cells (41
cancerous and 108 normal). The image size ranges from 93x64 to 300x227. First,
all images are preprocessed to remove the background and normalize intensity
by setting background spectral signature to zero. Then for each pixel to be
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DB2 DB16 Bio2.2 Gabor Combined
Original Dim. 800 800 900 1200 3700

After Screening 48 42 52 30 68

Table 1. Various dimensions
before and after SVM based
feature screening.

classified, various image features are extracted in a 16 × 16 block (the block size
is chosen via cross-validation) around it in each band, as described in section 2.
Thus a very high dimensional multispectral texture feature vector is associated
with each pixel. At pixel level, we collect a total of 156,732 sample vectors
(26,064 positive and 132,063 negative) from all 40 images. As samples from the
same image are often highly correlated, they are always kept as a whole when
partitioning training and test sets in all the following experiments.
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Fig. 4. Comparison between SVM and
IG+AVR based screenings.

We evaluated the selected 68 fea-
tures on the original full sample set
using the modified quadratic discrim-
inant. The ROC curve is plotted in
Figure 4 against the ROC curve of
IG+AVR screening depicted for com-
parison. It is easy to observe that
SVM based screening outperforms
IG+AVR, especially when the True
Positive Rate (TPR) is high.

Pixel Classification. We investi-
gated the effect on pixel-level classi-
fication by replacing IG and AVR fea-
ture screening [2] with the proposed
method. In order to reduce the train-
ing complexity, a total of 29,487 sam-
ples were randomly selected (13,022
positive and 16,465 negative). SVM

based feature screening method with p-degree polynomial kernels was applied
to each of four types of wavelet features respectively. For each type of wavelet,
images were randomly divided into training set (32 images) and test set (8 im-
ages) for a number of times. Each time we record False Positive Rate (FPR)
on the test set versus subset dimension. Then we averaged these FPR curves,
based on which a proper feature dimension m was manually selected. After that
we collected all features ever appeared among the top m features in each im-
age partition, and regarded them as the selected features for that wavelet type.
Then we put together all the selected features from four types of wavelets, and
applied the SVM based feature screening algorithm. Again we did random par-
tition of training and test images, and selected a proper dimension m′ based on
the average FPR curve. Various dimensions before and after feature screening
are summarized in Table 1.

Finally, we applied Sequential Backward Selection (SBS) to the 68 survivals
of SVM based screening to investigate their redundancy. 8-fold cross validation
error on the training set was chosen as the evaluation function in SBS. The aver-
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Fig. 5. (a) Average FPR versus subset dimension in sequential backward selection.
Analysis of the selected feature subsets with respect to their feature type and spectral
band distribution is also provided for us to gain some insight of the selected features.
Plots shown are frequency histograms of selected statistics (b), wavelet features (c),
and spectral bands (d). Each short segment in (c-d) corresponds to a particular feature.

Fig. 6. Example cancerous cell detection results. All images contain one or more can-
cerous cells except the last one (with frame), which is a false positive case.

age accuracy over 13 test runs is depicted in Fig 5(a). It is observed that feature
dimension can be consistently reduced below 40 with little loss of accuracy. We
analyzed those features that rank among the top 40 in any of the 13 runs with
respect to their feature type and spectral band distribution, and the results are
summarized in Figure 5(b-d). Note that distributions of discriminative features
are not uniform. For instance, 86.9% features are from 3 out of 10 types of statis-
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tics (mean 36.5%, median 30.8%, entropy 19.6%). Over 15 features are selected
from spectral band 3 while only 1 from band 7.

Region Detection. As the number of available images is small, we evaluate the
performance of the complete detection system by leave-one-out cross validation
method. Each time 39 images are used to train the pixel classifier, and one
image is reserved for test. Some typical detection results are shown in Figure 6.
Among the 149 cells distributed in 40 images, one cancerous cell is missed (TPR
= 40/41 ≈ 98%), and one normal cell is falsely detected (FPR = 1/108 ≈ 1%).

5 Related Work and Conclusion

In this paper, we presented a novel SVM-based feature screening method. Guyon
et al. [6] proposed a feature ranking scheme by linear SVMs. The basic idea is
to use the magnitude of the weights of a linear discriminant classifier as an
indicator of feature relevance. Our method can be considered as a nonlinear
extension of this linear scheme. SVM boundary has also been used in locally
adaptive metric techniques to improve k-NN performance [7]. Measures of local
feature relevance are computed by the surface normal near the query, from which
a local full-rank transformation is derived. Such local methods need to perform
k-NN procedure multiple times in the original high-dimensional space. On the
contrary, our method tries to globally characterize the discriminative information
embedded in the SVM decision boundary. It generates global feature relevance
measures, and thus is computationally more efficient.

We applied the proposed method to multispectral Pap smear image classifi-
cation for cervical cancer detection. Comparative experiments show significant
improvements on pixel-level classification accuracy using the new feature screen-
ing method. We have shown the effectiveness of image feature screening/selection
in cancerous cell detection on a novel image modality (multispectral image). A
much larger PAP smear image set and an even richer image feature space will
be used to further validate our method.
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