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Abstract In this paper, we present an algorithm to proba-
bilistically estimate object shapes in a 3D dynamic scene us-
ing their silhouette information derived from multiple geo-
metrically calibrated video camcorders. The scene is repre-
sented by a 3D volume. Every object in the scene is asso-
ciated with a distinctive label to represent its existence at
every voxel location. The label links together automatically-
learned view-specific appearance models of the respective
object, so as to avoid the photometric calibration of the cam-
eras. Generative probabilistic sensor models can be derived
by analyzing the dependencies between the sensor observa-
tions and object labels. Bayesian reasoning is then applied
to achieve robust reconstruction against real-world environ-
ment challenges, such as lighting variations, changing back-
ground etc. Our main contribution is to explicitly model the
visual occlusion process and show: (1) static objects (such as
trees or lamp posts), as parts of the pre-learned background
model, can be automatically recovered as a byproduct of the
inference; (2) ambiguities due to inter-occlusion between
multiple dynamic objects can be alleviated, and the final re-
construction quality is drastically improved. Several indoor
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and outdoor real-world datasets are evaluated to verify our
framework.

Keywords Multi-view 3D reconstruction · Bayesian
inference · Graphical model · Shape-from-silhouette ·
Occlusion

1 Introduction

3D shape reconstruction from real world imagery is an im-
portant research area in computer vision. In this paper, we
focus on the problem of recovering a time-varying dynamic
scene involving moving (and static) objects observed from
multiple fix-positioned video streams with known geomet-
ric camera poses. This setup has been widely used in secu-
rity surveillance, movies, medical surgery, sport broadcast-
ing, digital 3D archiving, video games, etc.

There are mainly two categories of algorithms for such
multi-view setups. The first is multi-view stereo/Shape from
Photo-consistency (Kutulakos and Seitz 2000; Broadhurst et
al. 2001; Scharstein and Szeliski 2002; Slabaugh et al. 2004;
Seitz et al. 2006). They recover the surface of an object
assuming its appearance is the same across views, so 3D
surface points can be triangulated from multiple views. The
output is usually a detailed surface model, because in theory
object concavities can be recovered. However, in practice,
many challenges exist. On the one hand, the “cross-view
consistent appearance” assumption usually requires tedious
radiometric calibration of the cameras. This is hard to realize
in outdoor scenes without the constant illumination, which
is required by most of the state-of-the-art radiometric cali-
bration approaches (Ilie and Welsh 2005; Joshi et al. 2005;
Takamatsu et al. 2008). In addition, limited camera field of
view, motion blur, specular surfaces, object self-occlusion
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and over-compression of the videos may all invalidate the
consistency assumption. On the other hand, even the ap-
pearance is the same across views, the 3D point triangula-
tion technique might as well fail in homogeneous regions
(such as the shirts in Fig. 1(c), which are common in practi-
cal datasets), where no 2D feature point can be distinctively
located.

The method we present in this paper fall in the sec-
ond category—Shape from Silhouette methods (Matusik et
al. 2000, 2001; Lazebnik et al. 2001; Franco and Boyer
2003), which usually depict the scene as foreground mov-
ing objects against known static background, and generally
assume the silhouette of a foreground object in a camera
view can be subtracted from the background, e.g. Fig. 1(d)
and (e). Assume the camera network is geometrically cal-
ibrated beforehand, the back-projected silhouette cones in-
tersect one another to form the visual hull (Baumgart 1974;
Laurentini 1994), an approximate shape of the original ob-
ject. Silhouette-based algorithms are relatively simple, fast,
and output a global closed shape of the object. Therefore
they are good choices for dynamic scene analysis. They also
do not require object appearance to be similar across views,
thus bypass the radiometric calibration of the camera net-
work. And they are not affected by homogeneous regions of
the objects either. For the above reasons, many state-of-the-
art multi-view stereo approaches such as (Sinha and Polle-
feys 2005; Furukawa and Ponce 2006) use a visual hull as
initialization, or silhouette-based constraints.

However, Shape from Silhouette methods have their own
caveats: most silhouette-based methods are highly depen-
dent on appearance-based background modeling, which is
usually sensitive to imaging sensor noise, shadows, illumi-
nation variations in the scene, etc. Also the background sub-
traction techniques are usually unstable when the modeled
object has a similar appearance to the background. There-
fore, silhouette-based 3D modeling techniques were usu-
ally used in a controlled, man-made environment, such as
a turn-table setup or indoor laboratory. In order to extend
these approaches in uncontrolled, natural environments, re-
searchers have explored different possibilities to improve
the robustness, such as adaptively updating the background
models (Stauffer and Grimson 1999; Elgammal et al. 2002;
Kim et al. 2005), using a discrete global optimization frame-
work (Snow et al. 2000), proposing silhouette priors over
multi-view sets (Grauman et al. 2003), and introducing a
sensor fusion scheme to compute the probability of exis-
tence of the 3D shape (Franco and Boyer 2005).

There is one more challenge for silhouette-based meth-
ods to work in a general environment—occlusions, which
can be categorized into three types: (1) Self-occlusion. It
happens to every closed-surface object where a part of the
object is blocking another part of itself. The lack of infor-
mation in the occluded region introduces ambiguities, and is

one of the main reasons why a visual hull is always larger
than the real shape. Given a certain number of camera views,
in the absence of further surface information, self-occlusions
cannot always be handled because of silhouette ambiguities.
In this paper, we mainly address the other two types of oc-
clusions. (2) Static occlusion. It happens when a static ob-
ject blocks a dynamic object with respect to a certain camera
view, such as the sculpture blocking the person in Fig. 1(b).
In this paper, we call the static object (the sculpture) a static
occluder or simply an occluder, so as to differentiate from a
dynamic subject, such as a person. As the sculpture in Fig. 1,
occluders cannot always be removed from the scene in ad-
vance, causing their appearance to be included as part of the
pre-learnt background model. When a dynamic object goes
behind a static occluder, a static occlusion event happens.
When subjects of interest move behind occluders with re-
spect to a certain point of view, the colors perceived in that
view correspond to the occluder and thus are identical to the
colors learned in the background model. This results in ap-
parently corrupted silhouettes, corresponding to the region
of static occlusions, as in Fig. 1(d). Consequently, due to
the intersection rule, such corrupted silhouettes result in an
incomplete visual hull. This type of occlusion is specific to
reconstruction approaches based on silhouettes extracted us-
ing static background modeling. (3) Inter-occlusion. Occlu-
sions may also occur between two or more dynamic objects
of interest, as shown in Fig. 1(c). With the increase of such
occlusions, the discriminatory power of the silhouettes de-
creases, resulting in the reconstructed shapes much larger in
volume than the real objects. In fact, when more dynamic
objects cluster in the scene, the visibility ambiguity gener-
ally increases. This is discussed in detail in Sect. 2 (Fig. 3).

Both the static occlusion and inter-occlusion decrease the
quality of the final reconstruction result, yet they are very
common and almost unavoidable in everyday environments.
If we plan to use silhouette-based methods in uncontrolled
real-world scenes, we need to deal with both of them. The
difference between static occlusion and inter-occlusion is
that the static occluder’s appearance is already part of the
background model, but the dynamic objects’ are not. This
requires different consideration in the problem modeling.

In this paper, we explicitly model the static occlusion
and inter-occlusion events in a volume representation of the
reconstruction environment by analyzing the visibility re-
lationships. We show that the shape of the static occluders
can be recovered incrementally by accumulating occlusion
cues from the motion of the dynamic objects. Also, by us-
ing a distinct per-view appearance model for each dynamic
object, inter-occlusion and multi-object visibility ambigui-
ties can be effectively solved, while avoiding the photomet-
ric calibration of the cameras. All the reasonings are per-
formed in a probabilistic Bayesian sensor fusion framework,
which builds on the probabilistic silhouette-based modeling
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Fig. 1 The occlusion problem
for a silhouette-based method.
(a) A background view with a
sculpture as an irremovable
static visual occluder.
(b) A person in the scene.
(c) Two persons, one occluding
the other. (d) Background
subtraction silhouette for (b).
(e) Background subtraction
silhouette for (c)

(Franco and Boyer 2005) by introducing occlusion related
terms. The major task is to compute the posterior probability
for a given voxel to be part of a certain object shape, given
multi-view observations. Our algorithm is verified against
real datasets to be effective and robust in general indoor and
outdoor environment of densely populated dynamic scenes
with possible static occluders. We present the formulations
of (Guan et al. 2007, 2008) in a more consistent way, an-
alyze the theoretical properties of the recovered static oc-
cluder, discuss the drawbacks and propose some possible
extensions of the framework.

2 Related Work and Overview

2.1 Static Occlusion

As shown in the last section, a static occlusion makes the
silhouette incomplete, and thus has a negative impact over
the silhouette-based modeling. Consequently, the inclusive
property of the visual hull is no longer valid for models pro-
duced in this situation (Laurentini 1994): the real shape is
no longer guaranteed to reside within the visual hull. Gener-
ally detecting and accounting for static occlusion has drawn
much attention in areas such as depth layer extraction (Bros-
tow and Essa 1999), occluding T-junction detection (Apos-
toloff and Fitzgibbon 2005), binary occluder mask extrac-
tion (Guan et al. 2006), and single image object boundary
interpretation (Hoiem et al. 2007). All these works are lim-
ited to 2D image space.

Among papers regarding 3D occlusion, Favaro et al.
(2003) uses sparse 3D occluding T-junctions as salient fea-
tures to recover structure and motion. In De Bonet and Viola

(1999), occlusions are implicitly modeled in the context of
voxel coloring approaches, using an iterative scheme with
semi-transparent voxels and multiple views of a scene from
the same time instant. Our initial treatment of silhouette oc-
clusions has lead to subsequent work designed to track ob-
jects from a small set of views (Keck and Davis 2008), with
some differences in assumptions and modeling: they use it-
erative EM framework that at each frame first solving the
voxel occupancy which is then fed back into the system
to update the occlusion model. Also, for (Keck and Davis
2008), a hard threshold of silhouette information has to be
provided during the initialization and the occluder informa-
tion is maintained in a 4D (a 3D space volume per camera
view) state space.

We represent the static occluder explicitly with a random
variable at every location in the 3D scene. Theoretically oc-
cluder shapes can be accessed with careful reasoning about
the visual hull of the incomplete silhouettes, as depicted in
Fig. 2, which would lead to a deterministic algorithm to re-
cover occluders. Let S t be the set of incomplete silhouettes
obtained at time t , and V Ht the incomplete visual hull ob-
tained using these silhouettes. However V Ht is a region that
is observed by all cameras as being both occupied by an ob-
ject and unoccluded from any view. Thus we can deduce an
entire region Rt of points in space that are free from any
static occluder shape, as the shaded cones in Fig. 2(a). For-
mally, Rt is the set of points X ∈ R

3 for which a view i

exists, such that the viewing line of X from view i hits V Ht

at a first visible point Ai , and X ∈ OiAi , with Oi the op-
tical center of view i (Fig. 2(a)). This expresses the condi-
tion that X appears in front of the visual hull with respect
to view i. The region Rt varies with t , thus assuming static
occluders and broad coverage of the scene by dynamic ob-
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Fig. 2 Deterministic occlusion
reasoning. (a) An occluder-free
region Rt can be deduced from
the incomplete visual hull at
time t . (b) R: occluder-free
regions accumulated over time

ject motion, the free space in the scene can be deduced as
the region R = ⋃T

t=1 Rt . The shape of occluders, including
concavities if they were covered by object motion, can be
recovered as the complement of R in the common visibility
region of all views (Fig. 2(b)).

However this deterministic approach would yield an im-
practical and non-robust solution, due to inherent silhou-
ette extraction sensitivities to noise and corruption that con-
tribute irreversibly to the result. It also suffers from the limi-
tation that only portions of objects that are seen by all views
can contribute to occlusion reasoning. Moreover, the scheme
only accumulates negative information, where occluders are
certain not to be. However positive information is also un-
derlying to the problem: the discrepancies between the ob-
ject’s projection and the actual recorded silhouette would
tell us where an occlusion event is positively happening, as
long as we know where the object shape is, which the cur-
rent silhouette-based method is able to provide (Franco and
Boyer 2005). To lift these limitations and provide a robust
solution, we propose a probabilistic approach to the static
occlusion reasoning, in which both the negative and posi-
tive cues are fused and compete in a complementary way
towards the static occluder shape estimation.

2.2 Multiple Dynamic Objects Inter-occlusion

Most of the existing silhouette-based reconstruction meth-
ods focus on mono-object situations, and fail to address
the more general multi-object cases. When multiple dy-
namic objects are present in the scene, besides the inter-
occlusion problem in Fig. 1(c) and (e), binary silhouettes
and the resulting visual hull are not able to disambiguate re-
gions actually occupied by dynamic objects from silhouette-
consistent “ghost regions”—the empty regions that project
inside all dynamic objects’ silhouettes, which is depicted by
the polygonal gray region indicated by arrows in Fig. 3(a).
The ghost regions are increasingly likely as the number of
observed objects rises, because it then becomes more diffi-
cult to find views that visually separate any two objects in
the scene and carve out unoccupied regions of space.

The ghost regions have been analyzed in the context of
people counting/tracking to avoid producing ghost tracks
(Yang et al. 2003; Otsuka and Mukawa 2004). The method

Fig. 3 The principle of multi-object silhouette reasoning for shape
modeling disambiguation. (a) Ambiguous “ghost” regions in gray
polygons, due to the binary silhouette back-projection does not have
enough discriminability. (b) The ghost region ambiguities are reduced
or eliminated by distinguishing between multiple objects’ appearances

we propose casts the problem of silhouette modeling at
the multi-object level, where ghosts can naturally be elim-
inated based on per object silhouette consistency. Multi-
object silhouette reasoning has been applied in the context
of multi-object tracking (Mittal and Davis 2003; Fleuret et
al. 2007). The inter-occlusion problem has also been stud-
ied for the specific case of transparent objects (De Bonet
and Viola 1999). Recent tracking efforts also use 2D proba-
bilistic inter-occlusion reasoning to improve object localiza-
tion (Gupta et al. 2007). But none of these methods are able
to provide multiple probabilistic 3D shapes from silhouette
cues as proposed here.

To address this problem, in addition to the background
model learning, we also initialize a set of appearance mod-
els associated to every object in the scene. Given such extra
information, the probability of the ghost regions can be re-
duced, because the set of silhouettes from different views
that result into a ghost region are not drawn from consis-
tent appearance models of any single object, as depicted in
Fig. 3(b). Multiple silhouette labels have been introduced
in a deterministic, purely geometric method (Ziegler et al.
2003), but this requires an arbitrary hard threshold for the
number of views that define consistency. Moreover, silhou-
ettes are assumed to be noiseless, which is violated or re-
quires manual intervention for practical datasets. On the
contrary, we propose a fully automatic framework. Similar
to static occlusion formulation, using a volumetric represen-
tation of the 3D scene, we process multi-object sequences
by examining the noisy causal relationship between every
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voxel and the corresponding pixels in all camera views us-
ing a Bayesian formulation.

In particular, every voxel is modeled as a random vari-
able. It can take any one of the m states representing the
m possible objects in the scene. Given the knowledge that
a voxel is occupied by a certain object, the camera sen-
sor model explains what appearance distributions are sup-
posed to be observed. This framework is able to explic-
itly model inter-occlusion with other objects, and estimate
a window of object locations. The voxel sensor model se-
mantics and simplifications are borrowed from the occu-
pancy grid framework in robotics (Elfes 1989; Margaritis
and Thrun 1998). The proposed method is naturally com-
bined with the static occluder incremental recovery, because
as mentioned before, the occluder is nothing but another
state of a voxel. This scheme enables us to perform silhou-
ette inference (Sect. 3.2) in a way that reinforces regions of
space which are drawn from the same conjunction of color
distributions, corresponding to one object, and penalizes ap-
pearance inconsistent regions, while accounting for object
visibility.

In the rest of this paper, we first introduce the fundamen-
tal probabilistic sensor fusion framework and the detailed
formulations in Sect. 3. We then describe problems related
to building an automatic dynamic scene analysis system in
Sect. 4. Specifically, we discuss how to initialize the appear-
ance models and keep track the motion and status of each
dynamic object. Section 5 shows the results of the proposed
system and algorithm on real-world datasets. Despite the
challenges in the datasets, such as lighting variation, shad-
ows, background motion, reflection, dense population, dras-
tic color inconsistency between views, etc, our system pro-
duces high quality reconstructions. Section 6 analyzes the
advantages and limitations of this framework and compares
the two types of occlusions in more depth, and draws the
future picture.

3 Probabilistic Framework

Given the complete set of symbols listed in Table 1, we can
define our problem formally: at a specific time instant, given
a set of geometrically calibrated and temporally synchro-
nized video frames I from n cameras, we infer for every
discretized location X in a 3D occupancy volume grid its
probability of being L ∈ {∅, O,1, . . . ,m, U }. This means a
voxel could be empty (denoted by ∅), occupied by a static
occluder (denoted by O), or by one of the m objects cur-
rently in the scene, which are of known appearance mod-
els. Last but not the least, one more label U could be as-
signed, for unidentified objects. It acts as a default label to
capture all objects that are detected as different than back-
ground but not explicitly modeled by other labels. It is useful

Table 1 Notations of the multi-view system

n number of cameras

m number of dynamic objects

i camera index

X 3D location, in the occupancy grid

xi pixel at camera view i corresponding to the voxel X

li viewing line of X to view i

X̂i 3D location, on the viewing ray of X, and in front of X

with respect to view i

X̌i 3D location, on the viewing ray of X, and behind X with

respect to view i

L voxel labels

∅ empty space label

G dynamic object label

U label for a newcoming dynamic object, whose appearance

has not been learnt

O static occluder label

I t
i image from camera i at time t

Bi camera i’s background model

Cm
i dynamic object m’s appearance model in view i

S silhouette formation hidden variable

and effective for automatic detection of new objects coming
into the scene, whose appearance has not yet been learned
(Sect. 4.3).

Theoretically, the problem is to compute the posterior
probability from the camera observations; but it is not easy
in practice. Because the estimation of a voxel’s state in-
volves modeling dependencies with all other voxels on its
viewing lines with respect to all cameras. Given the huge
state space, i.e. the solid 3D volume, and multiple state la-
bels of different objects, it is impossible to enumerate all
state configurations to find the one with the highest prob-
ability. People have encountered similar problems and pro-
posed solutions that suppress the 3D volume state space into
2D ground plane (Mittal and Davis 2003) and then solve the
global solution as an offline process (Fleuret et al. 2007).
However, since we want to recover the full 3D information
for dynamic scenes, and to keep the potential of real-time
processing, the previous proposals are not satisfactory. In-
stead, we borrow the iterative idea of an EM framework
(Keck and Davis 2008) and break the estimation into two
steps: for every time instant, we first estimate the occupancy
probabilities for each of the individual dynamic object from
silhouette information using a Bayesian formulation; then
we estimate the inter-occlusion as well as static occlusion
in a second pass. Although refinements can be achieved by
doing iterations over this two-step solution, we demonstrate
with real datasets that the shape estimation is already good
for a single iteration of the two-step process.

In our formulation we address the inference of both sta-
tic occluders and multiple dynamic objects in one scene.
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Our treatment of static occluder is indifferent to the num-
ber of dynamic objects in the scene. To keep notations un-
cluttered we will present the occluder inference framework
in the context of only one undiscriminated dynamic object
label G with only two states G ∈ {0,1} (Sect. 3.1). We will
then specifically explain how to model multi-object inter-
occlusions in Sect. 3.2. In the latter we leave out occluder
inference for clarity, although we later show how to perform
both tasks simultaneously.

3.1 Static Occluder

In this section, to introduce the static occluder formulation,
for simplicity, we assume only one dynamic object is in the
scene. In the result section Sect. 5, we show that our occlu-
sion modeling technique also applies to multiple dynamic
objects. Let a binary variable G denote the single dynamic
object in the scene at voxel X, namely G = 1 means the
voxel is occupied by the object, and G = 0 denotes it is not.
The occluder occupancy state can also be expressed using
the binary label O. O = 1 occupied, and O = 0 not. Notice
that the static occluder state O is assumed to be fixed, while
the dynamic object state G varies over time t ∈ {1, . . . , T },
where T denotes the time instant of the last available frame
so far. The dynamic object occupancy of voxel X at time t

is expressed by a Gt . As shown in Fig. 4(a), the regions of
interest to infer the probabilities of both G and O are on
the viewing lines li , i ∈ {1, . . . , n} from the camera cen-
ters through X. The voxel X projects to n image pixels
xi, i ∈ {1, . . . , n}, whose color observed at time t in view i

is expressed by the variable I t
i . We assume that background

images, which are generally static, were pre-recorded free
of dynamic objects, and that the appearance and variability
of background colors for pixels xi has been modeled using a
set of parameters Bi . Such observations can be used to infer
the probability of dynamic object occupancy in the absence
of static occluders. The problem of recovering occluder oc-
cupancy is more complex because it requires modeling inter-
actions between voxels on the same viewing lines. Relevant
statistical variables are shown in Fig. 4(b).

3.1.1 Viewing Line Modeling

Because of potential mutual occlusions, to infer O, one must
account for other occupancies along the viewing lines of X.
Static occluder or dynamic shapes can be present along the
same viewing line, leading to different image formations
at the camera view i. Accounting for all the combinatorial
number of possibilities for voxel states along X’s viewing
line is neither necessary nor meaningful: first because occu-
pancies of neighboring voxels are fundamentally correlated
to the presence or the absence of a single common object,
second because the main useful information one needs to

make occlusion decisions about X is to know whether some-
thing is in front of it or behind it, regardless of the exact
locations along the viewing line.

With this in mind, the pixel observation at xi with respect
to a certain X’s viewing line li can be described with three
components: the state of X itself, the state of occlusion of X

by anything in front, and the state of what is at the back of X.
And the front and back components are modeled by extract-
ing the two most influential modes in front of and behind X.
Specifically, the locations of the two modes are given by two
voxels X̂t

i and X̌t
i . We select X̂t

i as the voxel at time t that
most contributes to the belief that X is obstructed by a dy-
namic object along li , and X̌t

i as the voxel most likely to be
occupied by a dynamic object behind X on li at time t . With
this three-component modeling, comes a number of related
statistical variables illustrated in Fig. 4(b). The occupancy
of voxels X̂t

i and X̌t
i by the visual hull of a dynamic object

at time t on li is expressed by two binary state variables, re-

spectively Ĝt
i and Ǧt

i . Two binary state variables Ôt
i and Ǒt

i

express the presence or absence of an occluder at voxels X̂t
i

and X̌t
i respectively.

Note the difference in semantics between the two variable
groups Ĝt

i , Ǧt
i and Ôt

i , Ǒt
i . The former designates dynamic

shape visual hull occupancies of different time instants and
chosen positions, while the latter expresses the static oc-
cluder occupancies. The locations of Ĝt

i and Ǧt
i at different

times are different, because the dynamic shape may have
moved over the time; while Ôt

i and Ǒt
i are always associated

with the same locations as Ĝt
i and Ǧt

i , for the purpose of our
simplified viewing line state enumeration scheme. All the
aforementioned states need to be considered because they
dependently influence the occupancy inference at X. From
the image formation perspective, by varying the states of Ĝt

i ,

Ǧt
i , Ôt

i , Ǒt
i , G and O (the latter are the dynamic object and

occluder states at the voxel location X), it would form differ-
ent image pixel values at xi . For legibility, we occasionally
refer to the conjunction of a group of variables by dropping
the indices and exponents, e.g. B = {B1, . . . , Bn}.

3.1.2 Joint Distribution

We now explain the dependencies between the problem vari-
ables to simplify the their joint probability distribution. An
intuitive assumption is that different views can be inde-
pendently predicted without the knowledge of other views,
given the knowledge about the scene G and O. The back-
ground model for one view can be independently trained.
A second assumption is that space occupancy variables at
X depend only on the information along optic rays that go
through X, which may include not just the single pixel that
the voxel is projected onto, but a 2D neighborhood of pix-
els around the voxel’s projection. We assume that the view-
ing line variables are sufficient to model the dependencies
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Fig. 4 Problem overview. (a) Geometric context of voxel X. (b) Main
statistical variables used to infer the occluder occupancy probability
of X. Gt , Ĝt

i , Ǧt
i : dynamic object occupancies at relevant voxels at, in

front of, behind X respectively. O, Ôt
i , Ǒt

i : static occluder occupancies
at, in front of, behind X. I t

i , Bi : colors and background color models
observed where X projects in images

Fig. 5 The dependency graph for the static occluder inference at
voxel X. O and Gt are the occluder occupancy and dynamic object
occupancy state at time t at location X. Notice that the background Bi

is assumed to be only dependent on the view but constant over time;
while Ôt and Ǒt are at different locations at different times for X,
though O itself is not a function of time

between a voxel X and other voxels on its viewing lines.
This assumption allows us to use the common silhouette
method simplification which consists in independently com-
puting probabilities of each voxel X. This avoids the highly
complex problem of updating the full grid state O while
simultaneously accounting for viewing line dependencies.
Besides, this assumption is reasonable because it is simi-
lar to deterministic volumetric visual hull algorithms, where
every voxel’s status is evaluated individually against its pro-
jections onto image pixels. Results show that independent
estimation, while not as exhaustive as a global search over
all voxel configurations, still provides very robust and usable
information, at a much lower cost.

We now describe the noisy interactions between the vari-
ables considered, through the decomposition of their joint
distribution p(O, G, Ô, Ĝ, Ǒ, Ǧ, I, B). Given the variable
dependency graph shown in Fig. 5, we propose:

p(O)

T∏

t=1

p(Gt | O)

n∏

i=1

p(Ôt
i )p(Ĝt

i | Ôt
i )p(Ǒt

i )p(Ǧt
i | Ǒt

i )

× p(I t
i | Ôt

i , Ĝt
i , O, Gt , Ǒt

i , Ǧt
i , Bi ). (1)

p(O), p(Ôt
i ) and p(Ǒt

i ) are priors of occluder occu-
pancy. We set them to a single constant distribution Po

which reflects the expected ratio between occluder voxels
and non-occluder voxels in a scene. No particular region of
space is to be favored a priori.

p(Gt | O), p(Ĝt
i | Ôt

i ), p(Ǧt
i | Ǒt

i ) are priors of dynamic
visual hull occupancy with identical semantics. This choice
of terms reflects the following modeling decisions. First, the
dynamic visual hull occupancies involved are considered in-
dependent of one another as they synthesize the informa-
tion of three distinct regions for each viewing line. However
they depend upon the knowledge of occluder occupancy at
the corresponding voxel position, because occluder and dy-
namic object occupancies are mutually exclusive at a given
scene location. Importantly however, because we only use
silhouette cues, we do not have direct access to dynamic ob-
ject occupancies but to the occupancies of its visual hull.
Fortunately this ambiguity can be adequately modeled in a
Bayesian framework, by introducing a local hidden variable
H expressing the correlation between dynamic and occluder
occupancy:

p(Gt | O) =
∑

H
p(H)p(Gt | H, O). (2)

We set p(H = 1) = Pc using a constant expressing our
prior belief about the correlation between visual hull and
occluder occupancy. The prior p(Gt | H, O) explains what
we expect to know about Gt given the state of H and O:

p(Gt = 1 | H = 0, O = ω) = PGt
∀ω, (3)

p(Gt = 1 | H = 1, O = 0) = PGt
, (4)

p(Gt = 1 | H = 1, O = 1) = Pgo, (5)

with P Gt
the prior dynamic object occupancy probability as

computed independently of occlusions (Franco and Boyer
2005), and Pgo set close to 0, expressing that it is unlikely
that the voxel is occupied by dynamic object visual hulls
when the voxel is known to be occupied by an occluder
and both dynamic and occluder occupancy are known to be
strongly correlated (5). The probability of visual hull occu-
pancy is given by the previously computed occupancy prior,
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in case of non-correlation (3), or when the states are corre-
lated but occluder occupancy is known to be empty (4).

3.1.3 Image Sensor Model

We choose the sensor model p(I t
i | Ôt

i , Ĝt
i , O, Gt , Ǒt

i ,

Ǧt
i , Bi ) in (1) to be governed by a hidden local per-pixel

process S . The binary variable S represents the hidden sil-
houette detection state (0 or 1) at this pixel. It is unobserved
information and can be marginalized, given an adequate split
into two subterms:

p(I t
i | Ôt

i , Ĝt
i , O, Gt , Ǒt

i , Ǧt
i , Bi )

=
∑

S
p(I t

i | S, Bi )p(S | Ôt
i , Ĝt

i , O, Gt , Ǒt
i , Ǧt

i ). (6)

p(I t
i | S, Bi ) indicates what color distribution we expect

to observe given the knowledge of silhouette detection and
background color model at this pixel. When S = 0, the sil-
houette is undetected and thus the color distribution is dic-
tated by the pre-observed background model Bi (considered
Gaussian in our experiments). When S = 1, a dynamic ob-
ject’s silhouette is detected, in which case our knowledge of
color is limited, thus we use a uniform distribution in this
case, favoring no dynamic object color a priori.

p(S | Ôt
i , Ĝt

i , O, Gt , Ǒt
i , Ǧt

i ) is the second part of our sen-
sor model, which explicits what silhouette state is expected
to be observed given the three dominant occupancy state
variables of the corresponding viewing line. Since these are

encountered in the order of visibility X̂t
i ,X, X̌t

i , the follow-
ing relations hold:

p(S | {Ôt
i , Ĝt

i , O, Gt , Ǒt
i , Ǧt

i }
= {o,g,k, l,m,n}, Bi )

= p(S | {Ôt
i , Ĝt

i , O, Gt , Ǒt
i , Ǧt

i } = {0,0, o, g,p,q}, Bi )

= p(S | {Ôt
i , Ĝt

i , O, Gt , Ǒt
i , Ǧt

i } = {0,0,0,0, o, g}, Bi )

= PS(S | o,g) ∀(o, g) �= (0,0) ∀(k, l,m,n,p,q). (7)

These expressions convey two characteristics. First, that
the form of this distribution is given by the first non-empty
occupancy component in the order of visibility, regardless of
what is behind this component on the viewing line. Second,
that the form of the first non-empty component is given by
an identical sensor prior PS(S | o,g). We set the four para-
metric distributions of PS(S | o,g) as following:

PS(S = 1 | 0,0) = Pf a PS(S = 1 | 1,0) = Pf a, (8)

PS(S = 1 | 0,1) = Pd PS(S = 1 | 1,1) = 0.5, (9)

where Pf a ∈ [0,1] and Pd ∈ [0,1] are constants express-
ing the prior probability of false alarm and the probability

of detection, respectively. They can be chosen once for all
datasets as the method is not sensitive to the exact value of
these priors. Meaningful values for Pf a are close to 0, while
Pd is generally close to 1. Equation (8) expresses the cases
where no silhouette is expected to be detected in images, i.e.
either when there are no objects at all on the viewing line,
or when the first encountered object is a static occluder, re-
spectively. Equation (9) expresses two distinct cases. First,
the case where a dynamic object’s visual hull is encountered
on the viewing line, in which case we expect to detect a sil-
houette at the matching pixel. Second, the case where both
an occluder and dynamic visual hull are present at the first
non-free voxel. This is perfectly possible, because the vi-
sual hull is an overestimate of the true dynamic object shape.
While the true shape of objects and occluders are naturally
mutually exclusive, the visual hull of dynamic objects can
overlap with occluder voxels. In this case we set the dis-
tribution to uniform, because the silhouette detection state
cannot be predicted: it can be caused by shadows casted by
dynamic objects on occluders in the scene, and noise.

3.1.4 Static Occluder Occupancy Inference

Estimating the occluder occupancy at a voxel translates to
estimating p(O | I, B) in Bayesian terms. Applying Bayes
rule to the modeled joint probability (1) leads to the follow-
ing expression, once hidden variable sums are decomposed
to factor out terms not required at each level of the sum:

p(O | I, B) = 1

z
p(O)

T∏

t=1

(
∑

Gt

p(Gt | O)

(
n∏

i=1

P t
i

))

, (10)

where

P t
i =

∑

Ǒt
i ,Ǧt

i

p(Ǒt
i )p(Ǧt

i | Ǒt
i )

∑

Ôt
i ,Ĝt

i

p(Ôt
i )p(Ĝt

i | Ôt
i )

× p(I t
i | Ôt

i , Ĝt
i , O, Gt , Ǒt

i , Ǧt
i , Bi ). (11)

P t
i expresses the contribution of view i at a time t . The

formulation therefore expresses Bayesian fusion over the
various observed time instants and available views, with
marginalization over unknown viewing line states (10). The
normalization constant z is easily obtained by ensuring sum-
mation to 1 of the distribution.

3.1.5 Online Incremental Computation

With the formulation of the previous sections, the static oc-
cluder probability is computed by considering all the occlu-
sion events (between the dynamic shape and the static oc-
cluder) that have happened up to the current frame. It is an
online process. However, it has a subtle problem: for a given
voxel location which is supposed to be free of occupancy,
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the occluder probability may be high just because an occlu-
sion event has happened along the viewing line somewhere
behind the voxel (a real occluder is behind the voxel) with
respect to the camera, as shown in Fig. 9. And as the fig-
ure shows, it is only likely to happen at the beginning of the
videos when too little information has been collected. The
voxel’s occluder probability would eventually drop to a rea-
sonable near zero value when more evidences have shown
over time that since this voxel is not blocking the dynamic
shape behind it (maybe from all other views), it is more
likely to be an empty voxel.

There is a way however to detect this bias in the voxel
probability estimation. If we take a second look at the prob-
lem, this early decision is made from evidences that come
from only a few camera views—either because those views’s
geometric calibration errors are larger than others, or be-
cause there happen to be some real static occluders in those
views behind the misjudged voxel. Intuitively, a voxel X’s
probability estimation becomes more reliable as its occlu-
sion information is confirmed from more views, i.e. when a
dynamic object has passed behind X in a more views.

We thus introduce a measure of observability and trust-
worthiness of a voxel’s estimation: the reliability R of a
voxel at a certain time instant. Specifically, we model the
intuition that voxels whose occlusion cues arise from an ab-
normally low number of views should not be trusted. Since
this involves all cameras and their observations jointly, the
inclusion of this constraint in our initial model would break
the symmetry in the inference formulated in (10) and de-
feat the possibility for online updates. Instead, we opt to
use a second criterion in the form of a reliability measure
R ∈ [0,1]. Small values indicate poor coverage of dynamic
objects, while large values indicate sufficient cue accumula-
tion. We define reliability using the following expression:

R = 1

n

n∑

i=1

max
t

(1 − P Ĝt
i
)P Ǧt

i
(12)

with P Ĝt
i

and P Ǧt
i

the prior probabilities of dynamic visual

hull occupancy. R examines, for each camera i, the maxi-
mum occurrence across the examined time sequence of X to
be both unobstructed and in front of a dynamic object. This
determines how well a given view i was able to contribute
to the estimation across the sequence. R then averages these
values across views, to measure the overall quality of obser-
vation, and underlying coverage of dynamic object motion
for the purpose of occlusion inference.

The reliability R is not a probability, but an indicator. It
can be used online in conjunction to the occlusion probabil-
ity estimation to evaluate a conservative occluder shape at
all times, by only considering voxels for which R exceeds
a certain quality threshold. As shown in Sect. 5.1.1, it can
be used to reduce the sensitivity to noise in regions of space
that have only been observed marginally.

3.1.6 Accounting the Recovered Occluder

As more data becomes available and reliable, the results of
occluder estimation can be accounted for when inferring the
occupancies of dynamic objects. This translates to the eval-
uation of p(Gτ | I τ , B) for a given voxel X and time τ . The
occlusion information obtained can be included as a prior
in dynamic object inference, by adequately modifying the
existing probabilistic framework (Franco and Boyer 2005),
leading to the following simplified joint probability distrib-
ution:

p(O)p(Gτ | O)

n∏

i=1

p(Ôτ
i )p(Ĝτ

i | Ôτ
i )

× p(I τ
i | Ôτ

i , Ĝτ
i , O, Gτ , Bi ),

where Gτ and O are the dynamic and occluder occupancy at
the inferred voxel, Ôτ

i , Ĝτ
i the variables matching the most

influential static occluder component along li in front of X.
This component is selected as the voxel whose prior of be-
ing occupied is maximal, as computed to date by occlusion
inference. In this inference, there is no need to consider vox-
els behind X, because knowledge about their occlusion oc-
cupancy has no influence on the dynamic object occupancy
state of X.

The parametric forms of this distribution have identical
semantics as Sect. 3.1.2 but different assignments because
of the nature of the inference. Naturally no prior informa-
tion about dynamic occupancy is assumed here. p(O) and
p(Ôτ

i ) are set using the result to date of expression (10) at

their respective voxels, as prior. p(Gτ | O) and p(Ĝτ
i | Ôτ

i )

are constant: p(Gτ = 1 | O = 0) = 0.5 expresses a uniform
prior for dynamic objects when the voxel is known to be
occluder free. p(Gτ = 1 | O = 1) = Pgo expresses a low
prior of dynamic visual hull occupancy given the knowl-
edge of occluder occupancy, as in (5). The term p(I τ

i | Ôτ
i ,

Ĝτ
i , O, Gτ , Bi ) is set identical to (7), only stripped of the in-

fluence of Ǒτ
i , Ǧτ

i .

3.2 Multiple Dynamic Objects

In this section, we focus on the inference of multiple dy-
namic objects. Since a dynamic object changes shape and lo-
cation constantly, our dynamic object reconstruction has to
be computed for every frame in time, and there is no way to
accumulate the information over time as we did for the static
occluder. We assume static occlusion is computed in an in-
dependent thread and can be used as prior in this inference.
We thus focus here on the multi-object problem occurring at
one time instant t . We introduce new notations to account for
up to m dynamic objects of interest, in a scene observed by n

calibrated cameras. Occupancies G at a given voxel X need
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Fig. 6 Overview of main statistical variables and geometry of the
problem. G is the occupancy at voxel X and lives in a state space L
of object labels. {Ii} are the color states observed at the n pixels where
X projects. {Gvj

i } are the states in L of the most likely obstructing vox-
els on the viewing line, for each of the m objects, enumerated in their
order of visibility {vj }i

now to be defined over an extended set of m + 2 labels (de-
scribed in the following section) rather than {0,1} to model
occupancy distributions over several objects. We now also
assume some prior knowledge about scene state is available
for each voxel X in the lattice and can be used in the infer-
ence. Various uses of this assumption will be demonstrated
in Sect. 4. Let us revisit the number of statistical variables
used to model the scene state, the image generation process
and to infer G , as depicted in Fig. 6.

3.2.1 Statistical Variables

Scene Voxel State Space The occupancy state of X is rep-
resented by G ∈ L, where L is a set of labels {∅,1, . . . ,m, U }.
A voxel is either empty (∅), one of m objects the model
is keeping track of (numerical labels), or occupied by an
unidentified object (U ). U is intended to act as a default
label capturing all objects that are detected as different
than background but not explicitly modeled by other labels,
which proves useful for automatic detection of new objects
(Sect. 4.3).

Observed Appearance The voxel X projects to a set of pix-
els, whose colors Ii , i ∈ 1, . . . , n we observe in images. We
assume these colors are drawn from a set of object and view
specific color models whose parameters we note Cl

i . More
complex appearance models are possible using gradient or
texture information, without loss of generality.

Latent Viewing Line Variables To account for inter-object
occlusion, we need to model the contents of viewing lines
and how it contributes to image formation. We assume some
a priori knowledge about where objects lie in the scene. The
presence of such objects can have an impact on the inference
of G because of the visibility of objects and how they af-
fect G . Intuitively, conclusive information about G cannot be

Fig. 7 The dependency graph for the dynamic object inference at
voxel X, assuming m dynamic objects in the scene and the probability
for X to be other labels are known. The background model for each
view B, the color model of each object for each view C and the static
occluder O are not drawn for clarity

obtained from a view i if a voxel in front of G with respect
to i is occupied by another object, for example. However,
G directly influences the color observed if it is unoccluded
and occupied by one of the objects. But if G is known to be
empty, then the color observed at pixel Ii reflects the appear-
ance of objects behind X in image i, if any. These visibility
intuitions are modeled below (Sect. 3.2.2).

It is again not meaningful to account for the combina-
torial number of occupancy possibilities along the viewing
rays of X. This is because neighboring voxel occupancies
on the viewing line usually reflect the presence of the same
object and are therefore correlated. In fact, assuming we wit-
ness no more than one instance of every one of the m ob-
jects along the viewing line, the fundamental information
that is required to reason about X is the knowledge of pres-
ence and ordering of the objects along this line. To repre-
sent this knowledge, as depicted in Fig. 6, assuming prior
information about occupancies is already available at each
voxel, we extract, for each label l ∈ L and each viewing line
i ∈ {1, . . . , n}, the voxel whose probability of occupancy is
dominant for that label on the viewing line. This corresponds
to electing the voxels which best represent the m objects and
have the most influence on the inference of G . We then ac-
count for this knowledge in the problem of inferring X, by
introducing a set of statistical occupancy variables Gl

i ∈ L,
corresponding to these extracted voxels. This is a generaliza-
tion of the idea expressed in Sect. 3.1.1 for occluder voxels,
to the general case of m object inter-occlusions.

3.2.2 Dependencies Consideration

Based on the dependency graph in Fig. 7, we propose a set
of simplifications to the joint probability distribution of the
set of variables, that reflect the prior knowledge we have
about the problem. In order to simplify the writing we will
often note the conjunction of a set of variables as follows:
G 1:m

1:n = {Gl
i }i∈{1,...,n},l∈{1,...,m}. We now decompose the joint

probability p(G, G 1:m
1:n , I1:n, C 1:m

1:n ) as:

p(G)
∏

l∈L
p(Cl

1:n)
∏

i,l∈L
p(Gl

i | G)
∏

i

p(Ii | G, G 1:m
i , C 1:m

i ).

(13)
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Prior Terms p(G) carries prior information about the cur-
rent voxel. This prior can reflect different types of knowl-
edge and constraints already acquired about G , e.g. local-
ization information to guide the inference (Sect. 4). p(Cl

1:n)
is the prior over the view-specific appearance models of a
given object l. The prior, as written over the conjunction of
these parameters, could express expected relationships be-
tween the appearance models of different views, even if not
color-calibrated. Since the focus in this paper is on the learn-
ing of voxel X, we do not use this capability here and as-
sume p(Cl

1:n) to be uniform.

Viewing Line Dependency Terms We have summarized the
prior information along each viewing line using the m voxels
most representative of the m objects, so as to model inter-
object occlusion phenomena. However when examining a
particular label G = l, keeping the occupancy information
about Gl

i would lead us to account for intra-object occlu-
sion phenomena, which in effect would lead the inference
to favor mostly voxels from the front visible surface of the
object l. Because we wish to model the volume of object l,
we discard the influence of Gl

i when G = l:

p(Gk
i | {G = l}) = P (Gk

i ) when k �= l, (14)

p(Gl
i | {G = l}) = δ∅(Gl

i ) ∀l ∈ L, (15)

where P (Gk
i ) is a distribution reflecting the prior knowledge

about Gk
i , and δ∅(Gk

i ) is the distribution giving all the weight
to label ∅. In (15) p(Gl

i | {G = l}) is thus enforced to be
empty when G is known to be representing label l, which
ensures that the same object is represented only once on the
viewing line.

Image Formation Terms p(Ii | G, G 1:m
i , C 1:m

i ) is the image
formation term. It explains what color we expect to observe
given the knowledge of viewing line states and per-object
color models. We decompose each such term in two sub-
terms, by introducing a local latent variable S ∈ L repre-
senting the hidden silhouette state:

p(Ii | G, G 1:m
i , C 1:m

i )

=
∑

S
p(Ii | S, C 1:m

i )p(S | G, G 1:m
i ). (16)

The term p(Ii | S, C 1:m
i ) simply describes what color is

likely to be observed in the image given the knowledge of
the silhouette state and the appearance models correspond-
ing to each object. S acts as a mixture label: if {S = l}
then Ii is drawn from the color model Cl

i . For objects
(l ∈ {1, . . . ,m}) we typically use Gaussian Mixture Mod-
els (GMM) (Stauffer and Grimson 1999) to efficiently de-
scribe the appearance information of dynamic object silhou-
ettes. For background (l = ∅) we use per-pixel Gaussian as

learned from pre-observed sequences, although other mod-
els are possible. When l = U the color is drawn from the
uniform distribution, as we make no assumption about the
color of previously unobserved objects.

The silhouette formation term p(S | G, G 1:m
i ) requires

that the variables be considered in their visibility order to
model the occlusion possibilities. Note that this order can
be different from 1, . . . ,m. We note {Gvj

i }j∈{1,...,m} the vari-
ables G 1:m

i as enumerated in the permutated order {vj }i re-
flecting their visibility ordering on viewing line li . If {g}i
denotes the particular index after which the voxel X itself
appears on viewing line li , then we can re-write the silhou-
ette formation term as p(S | Gv1

i · · · Gvg

i , G, Gvg+1
i · · · Gvm

i ).
A distribution of the following form can then be assigned to
this term:

p(S | ∅ · · · ∅, l,∗ · · · ∗) = dl(S) with l �= ∅ (17)

p(S | ∅, · · · · · · · · · ,∅) = d∅(S), (18)

where dk(S), k ∈ L is a family of distributions giving strong
weight to label k and lower equal weight to others, deter-
mined by a constant probability of detection Pd ∈ [0,1]:
dk(S = k) = Pd and dk(S �= k) = 1−Pd|L|−1 to ensure summa-
tion to 1. Equation (17) thus expresses that the silhouette
pixel state reflects the state of the first visible non-empty
voxel on the viewing line, regardless of the state of voxels
behind it (“∗”). Equation (18) expresses the particular case
where no occupied voxel lies on the viewing line, the only
case where the state of S should be background: d∅(S) en-
sures that Ii is mostly drawn from the background appear-
ance model.

3.2.3 Dynamic Object Inference

Estimating the occupancy at voxel X translates to estimating
p(G | I1:n, C 1:m

1:n ) in Bayesian terms. We apply Bayes’ rule
using the joint probability distribution, marginalizing out the
unobserved variables G 1:m

1:n :

p(G | I1:n, C 1:m
1:n ) = 1

z

∑

G 1:m
1:n

p(G, G 1:m
1:n , I1:n, C 1:m

1:n ) (19)

= 1

z
p(G)

n∏

i=1

f 1
i (20)

where

f k
i =

∑

Gvk
i

p(Gvk

i | G)f k+1
i for k < m, (21)

and

f m
i =

∑

Gvm
i

p(Gvm

i | G)p(Ii | G, G 1:m
i , C 1:m

i ). (22)



294 Int J Comput Vis (2010) 90: 283–303

Similar to (10), the normalization constant z is obtained
by ensuring that the distribution of (19) sum up to 1: z =
∑

G,G 1:m
1:n

p(G, G 1:m
1:n , I1:n, C 1:m

1:n ). The sum in this form is in-

tractable, thus we factorize the sum in (20). The sequence
of m functions f k

i specify how to recursively compute the
marginalization with the sums of individual Gk

i variables ap-
propriately subsumed, so as to factor out terms not required
at each level of the sum. Because of the particular form of
silhouette terms in (17), this sum can be efficiently com-
puted, given that all terms after a first occupied voxel of
the same visibility rank k share a term of identical value in
p(Ii | ∅ · · · ∅, {Gvk

i = l},∗ · · · ∗) = Pl (Ii ). They can be fac-
tored out of the remaining sum, which sums to 1 being a
sum of terms of a probability distribution, leading to the fol-
lowing simplification of (21), ∀k ∈ {1, . . . ,m − 1}:

f k
i = p(Gvk

i = ∅ | G)f k+1
i +

∑

l �=∅
p(Gvk

i =l | G)Pl (Ii ). (23)

4 Automatic Learning and Tracking

We have presented in Sect. 3 a generic framework to infer
the occupancy probability of a voxel X and thus deduce how
likely it is for X to belong to one of m objects. Some addi-
tional work is required to use it to model objects in practice.
The formulation explains how to compute the occupancy of
X if some occupancy information about the viewing lines
is already known. Thus the algorithm needs to be initial-
ized with a coarse shape estimate, whose computation is dis-
cussed in Sect. 4.1. Intuitively, object shape estimation and
tracking are complementary and mutually helpful tasks. We
explain in Sect. 4.2 how object localization information is
computed and used in the modeling. To be fully automatic,
our method uses the inference label U to detect objects not
yet assigned to a given label and learn their appearance mod-
els (Sect. 4.3). Finally, static occluder computation can eas-
ily be integrated in the system and help the inference be ro-
bust to static occluders (Sect. 4.4). The algorithm at every
time instance is summarized in Algorithm 1.

4.1 Shape Initialization and Refinement

The proposed formulation relies on some prior knowledge
about the scene occupancies and dynamic object ordering.
Thus part of the occupancy problem must be solved to boot-
strap the algorithm. Fortunately, using multi-label silhou-
ette inference with no prior knowledge about occupancies or
consideration for inter-object occlusions provides a decent
initial m-occupancy estimate. This simpler inference case

Algorithm 1 Dynamic Scene Reconstruction
Input: Frames at a new time instant for all views
Output: 3D object shapes in the scene
Coarse Inference;
if a new object enters the scene then

add a label for the new object;
initialize foreground appearance model;
go back to Coarse Inference;

end if
Refined Inference;
static occluder inference;
update object location and prior;
return

can easily be formulated by simplifying occlusion related
variables from (20):

p(G | I1:n, C 1:m
1:n ) = 1

z
p(G)

n∏

i=1

p(Ii | G, C 1:m
i ). (24)

This initial coarse inference can then be used to infer a
second, refined inference, this time accounting for viewing
line obstructions, given the voxel priors p(G ) and P (Gj

i )

of (14) computed from the coarse inference. The prior over
p(G) is then used to introduce soft constraints to the infer-
ence. This is possible by using the coarse inference result
as the input of a simple localization scheme, and using the
localization information in p(G) to enforce a compactness
prior over the m objects, as discussed in Sect. 4.2.

4.2 Object Localization

We use a localization prior to enforce the compactness of
objects in the inference steps. For the particular case where
walking people represent the dynamic objects, we take ad-
vantage of the underlying structure of the dataset, by pro-
jecting the maximum probability over a vertical voxel col-
umn on the horizontal reference plane. We then localize the
most likely position of objects by sliding a fixed-size win-
dow over the resulting 2D probability map for each object.
The resulting center is subsequently used to initialize p(G),
using a cylindrical spatial prior. This favors objects localized
in one and only one portion of the scene and is intended as
a soft guide to the inference. Although simple, this track-
ing scheme is shown to outperform state of the art methods
(Sect. 5.2.2), thanks to the rich shape and occlusion infor-
mation modeled.

4.3 Automatic Detection of New Objects

The main information about objects used by the proposed
method is their set of appearances in the different views.



Int J Comput Vis (2010) 90: 283–303 295

These sets can be learned offline by segmenting each ob-
served object alone in a clear, uncluttered scene before
processing multi-objects scenes. More generally, we can ini-
tialize object color models in the scene automatically. To
detect new objects we compute U ’s object location and vol-
ume size during the coarse inference, and track the unknown
volume just like other objects as described in Sect. 4.2.
A new dynamic object inference label is created (and m in-
cremented), if all of the following criteria are satisfied:

– The entrance is only at the scene boundaries
– U ’s volume size is larger than a threshold
– U is not too close to the scene boundary
– Subsequent updates of U ’s track are bounded

To build the color model of the new object, we project
the maximum voxel probability along the viewing ray to
the camera view, threshold the image to form a “silhou-
ette mask”, and choose pixels within the mask as training
samples for a GMM appearance model. Samples are only
collected from unoccluded silhouette portions of the object,
which can be verified from the inference. Because the cam-
eras may be badly color-calibrated, we propose to train an
appearance model for each camera view separately. This ap-
proach is fully evaluated in Sect. 5.2.1.

4.4 Occluder computation

The static occluder computation can easily be integrated
with the multiple dynamic object reconstruction described
in Sect. 3.1. At every time instant the dominant occupancy
probabilities of m objects are already extracted; the two
dominant occupancies in front and behind the current voxel
X can be used in the occupancy inference formulation of
Sect. 3.1. It could be thought that the multi-label dynamic
object inference discussed in this section is an extension to
the single dynamic object cases assumed in Sect. 3.1. In fact,
the occlusion occupancy inference does benefit from the dis-
ambiguation inherent to multi-silhouette reasoning, as the
real-world experiment shows, in Fig. 16, in Sect. 5.

5 Result and Evaluation

5.1 Occlusion Inference Results

To demonstrate the validity of the static occluder shape re-
covery, we mainly use a single person as the dynamic object
in the scene. In the next section, we also show that it can
be recovered in the presence of multiple dynamic objects.
We show three sequences: the PILLARS and SCULPTURE se-
quences, acquired outdoors, and the CHAIR sequence, ac-
quired indoors, with combined artificial and natural light
from large bay windows. In all sequences nine DV cam-
eras surround the scene of interest, background models are

learned in the absence of moving objects. A single person
as our dynamic object walks around and through the oc-
cluder in each scene. The shape of the person is estimated
at each considered time step and used as prior to occlusion
inference. The data is used to compute an estimate of the
occluder shape using (10). Results are presented in Fig. 8.

Nine geometrically calibrated 720 × 480 resolution cam-
eras all record at 30 fps. Color calibration is unnecessary
because the model uses silhouette information only. The
background model is learned per-view using a single RGB
Gaussian color model per pixel, and training images. Al-
though simple, the model is proved sufficient, even in out-
door sequences subject to background motion, foreground
object shadows, and substantial illumination changes, illus-
trating the strong robustness of the method to difficult real
conditions. The method copes well with background mis-
classifications that do not lead to large coherent false pos-
itive dynamic object estimations: pedestrians are routinely
seen in the background for the SCULPTURE and PILLARS

sequences (e.g. Fig. 8(a1)), without any significant corrup-
tion of the inference.

Adjacent frames in the input videos contain largely re-
dundant information for occluder modeling, thus videos can
safely be subsampled. PILLARS was processed using 50%
of the frames (1053 frames processed), SCULPTURE and
CHAIR with 10% (160 and 168 processed frames respec-
tively).

5.1.1 Online Computation Results

All experiments can be computed using incremental infer-
ence updates. Figure 9 depicts the inference’s progression,
using the sensor fusion formulation alone or in combination
with the reliability criterion. For the purpose of this exper-
iment, we used the PILLARS sequence and manually seg-
mented the occluder in each view for a ground truth compar-
ison, and focused on a subregion of the scene in which the
expected behaviors are well isolated. Figure 9 shows that
both schemes converge reasonably close to the visual hull
of the considered pillar. In scenes with concave parts acces-
sible to dynamic objects, the estimation would carve into
concavities and reach a better estimate than the occluder’s
visual hull. A somewhat larger volume is reached with both
schemes in this example. This is attributable to calibration
errors which over-tightens the visual hull with respect to the
true silhouettes, and accumulation of errors in both schemes
toward the end of the sequence. We trace those to the redun-
dant, periodical poses contained in the video, that sustain
consistent noise. This suggests the existence of an optimal fi-
nite number of frames to be used for processing. Jolts can be
observed in both volumes corresponding to instants where
the person walks behind the pillar, thereby adding positive
contributions to the inference. The use of the reliability cri-
terion defined in Sect. 3.1.5 contributes to lower sensitivity
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Fig. 8 Occluder shape retrieval results. Sequences: (a) PILLARS,
(b) SCULPTURE, (c) CHAIR. (1) Scene overview. Note the harsh light,
difficult backgrounds for (a) and (b), and specularity of the sculpture,
causing no significant modeling failure. (2–3) Occluder inference ac-
cording to (10). Blue: neutral regions (prior Po), red: high probability
regions. Brighter/clear regions indicate the inferred absence of occlud-

ers. Fine levels of detail are modeled, sometimes lost—mostly to cali-
bration. In (a) the structure’s steps are also detected. (4) Same inference
with additional exclusion of zones with reliability under 0.8. Peripheral
noise and marginally observed regions are eliminated. The background
protruding shape in (c3) is accounting for an actual occlusion from a
single view, the pillar visible in (c3)

Fig. 9 Online inference
analysis and ground truth visual
hull comparison, using
PILLARS dataset, focusing on a
slice including the middle pillar.
(a) Frames 109, 400 and 1053,
inferred using (10). (b) Same
frames, this time excluding
zones with reliability under 0.8
(reverted here to 0.5).
(c) Number of voxels compared
to ground truth visual hull
across time
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Fig. 10 (a) Person shape estimate from PILLARS sequence, as oc-
cluded by the rightmost pillar and computed without accounting for
occlusion. (b) Same situation accounting for occlusion, showing better
completeness of the estimate. (c) Volume plot in both cases. Account-

ing for occlusion leads to more stable estimates across time, decreases
false positives and overestimates due to shadows cast on occluders (I),
increases estimation probabilities in case of occlusion (II)

to noise, as well as a permanently conservative estimate of
the occluder volume as the curves show in frames 100–200.
Raw inference (10) momentarily yields large hypothetical
occluder volumes when data is biased toward contributions
of an abnormally low subset of views (frame 109).

5.1.2 Accounting for Occlusion in SfS

Our formulation (Sect. 3.1.6) can be used to account for
the accumulated occluder information in dynamic shape in-
ference. We only use occlusion cues from reliable voxels
(R > 0.8) to minimize false positive occluder estimates,
whose excessive presence would lead to sustained errors.
While in many cases the original dynamic object formula-
tion (Franco and Boyer 2005) performs robustly, a number
of situations benefit from the additional occlusion knowl-
edge (Fig. 10). Person volume estimates can be obtained
when accounting for occluders. These estimates appear on
average to be a stable multiple of the real volume of the per-
son, which depends mainly on camera configuration. This
suggests a possible biometrics application of the method, for
disambiguation of person recognition based on computed
volumes.

5.2 Multi-Object Shape Inference Results

We have used four multi-view sequences to validate multi-
object shape inference. Eight 30 fps 720 × 480 DV cam-
eras surrounding the scene in a semi-circle were used for
the CLUSTER and BENCH sequences. The LAB sequence is
provided by (Gupta et al. 2007) and SCULPTURE was used
to reconstruct the static sculpture (Fig. 8(b)) in the previous
section. Here, we show the result of multiple persons walk-
ing in the scene together with the reconstructed sculpture.

Table 2

No. of Cam. No. of Dynamic Obj. Occluder

CLUSTER (outdoor) 8 5 no

BENCH (outdoor) 8 0–3 yes

LAB (indoor) 15 4 no

SCULPTURE (outdoor) 9 2 yes

Cameras in each data sequence are geometrically cali-
brated but not color calibrated. The background model is
learned per-view using a single Gaussian color model at
every pixel, with training images. Although simple, the
model is proved to be sufficient, even for outdoor sequences
subject to background motion, foreground object shadows,
window reflections and substantial illumination changes,
showing the robustness of the method to difficult real condi-
tions. For dynamic object appearance models of the CLUS-
TER, LAB and SCULPTURE data sets, we off-line train a per-
view RGB GMM model for each person with manually seg-
mented foreground images. For the BENCH sequence how-
ever, appearance models are initialized online automatically,
using the method described in Sect. 4.3.

5.2.1 Appearance Modeling Validation

It is extremely hard to color-calibrate a large number of cam-
eras, not to mention under varying lighting conditions, as
in a natural outdoor environment. To show this, we com-
pare different appearance modeling schemes in Fig. 11, for a
frame of the outdoor BENCH dataset. Without loss of gener-
ality, we use GMMs. The first two rows compare silhouette
extraction probabilities using the color models of spatially
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neighboring views. These indicate that stereo approaches
which heavily depend on color correspondence across views
are very likely to fail in the natural scenarios, especially
when the cameras have dramatic color variations, such as
in view 4 and 5. The global appearance model on row 3 per-
forms better than row 1 and 2, but this is mainly due to its
compensation between large color variations across camera
views, which at the same time, decreases the model’s dis-
criminability. The last row obviously is the winner where

Fig. 11 Appearance model analysis. A person in eight views is dis-
played in row 4. A GMM model Ci is trained for view i ∈ [1,8].
A global GMM model C0 over all views is also trained. Row 1, 2, 3
and 5 compute P(S | I, B, Ci+1), P(S | I, B, Ci−1), P(S | I, B, C0)

and P(S | I, B, Ci ) for view i respectively, with S the foreground la-
bel, I the pixel color, B the uniform background model. The probabil-
ity is displayed according to the color scheme at the top right corner.
The average probability over all pixels in the silhouette region and the
mean color modes of the applied GMM model are shown for each fig-
ure

a color appearance model is independently maintained for
every camera view. We hereby use the last scheme in our
system. Once the model is trained, we do not update it as
time goes by. But this online updating of the appearance
models could be an easy extension for robustness.

One more thing to note, is that in our approach, even
though an object’s appearances are learnt for each view sep-
arately, they are still linked together in 3D by the same ob-
ject label. In this sense, our per-view based appearances can
be taken as an intermediate model between the global model
as used in Shape from Photo-consistency and multi-view
stereo, and the pure 2D image models used by video sur-
veillance and tracking literatures.

5.2.2 Densely Populated Scene

The CLUSTER sequence is a particularly challenging config-
uration: five people are on a circle of less than 3 m. in di-
ameter, yielding an extremely ambiguous and occluded sit-
uation at the circle center. Despite the fact that none of them
are being observed in all views, we are still able to recover
the people’s label and shape. Images and results are shown
in Fig. 12. The naive 2-label reconstruction (probabilistic
visual hull) yields large volumes with little separation be-
tween objects, because the entire scene configuration is too
ambiguous. Adding tracking prior information estimates the
most probable compact regions and eliminates large errors,
at the expense of dilation and lower precision. Accounting
for viewing line occlusions enables the model to recover
more detailed information, such as the limbs.

The LAB sequence (Gupta et al. 2007) with poor image
contrast is also processed. The reconstruction result from all
15 cameras is shown in Fig. 13. Moreover, in order to evalu-
ate our localization prior estimation, we compare our track-
ing method (Sect. 4.2) with the ground truth data, the result
of (Gupta et al. 2007) and (Mittal and Davis 2003). We use
the exactly same eight cameras as in (Mittal and Davis 2003)

Fig. 12 Result from 8-view
CLUSTER dataset. (a) Two
views at frame 0. (b) Respective
2-labeled reconstruction.
(c) More accurate shape
estimation using our algorithm
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for the comparison, shown in Fig. 13(b). Our method is gen-
erally more robust in tracking, and also builds 3D shape in-
formation. Most existing tracking methods only focus on a
tracking envelope and do not compute precise 3D shapes. It
is this shape information that enables our method to achieve
comparable or better precision.

5.2.3 Automatic Appearance Model Initialization

The automatic dynamic object appearance model initializa-
tion has been tested using the BENCH sequence. Three peo-
ple are walking into the empty scene one after another. By
examining the unidentified label U , object appearance mod-
els are initialized and used for shape estimation in subse-

quent frames. Volume size evolution of all labels are shown

in Fig. 14 and the reconstructions at two time instants are

shown in Fig. 15.

During the sequence, U has three major volume peaks

due to three new persons entering the scene. Some smaller

perturbations are due to shadows on the bench or the ground.

Besides automatic object appearance model initialization,

the system robustly re-detects and tracks the person who

leaves and re-enters the scene. This is because once the la-

bel is initialized, it is evaluated for every time instant, even

if the person is out of the scene. The algorithm can easily be

improved to handle leaving/reentering labels transparently.

Fig. 13 LAB dataset result from
(Gupta et al. 2007). (a) 3D
reconstruction with 15 views at
frame 199. (b) 8-view tracking
result comparison with methods
in (Gupta et al. 2007;
Mittal and Davis 2003) and the
ground truth data. Mean error in
ground plane estimate in mm is
plotted

Fig. 14 Appearance model
automatic initialization with the
BENCH sequence. The volume
of U increases if a new person
enters the scene. When an
appearance model is learned, a
new label is initialized. During
the sequence, L1 and L2
volumes drop to near zero value
because they walk out of the
scene on those occasions

Fig. 15 BENCH result. Person
numbers are assigned according
to the order their appearance
models are initialized. At frame
329, P3 is entering the scene.
Since it’s P3’s first time into the
scene, he is captured by label U
(gray color). P1 is out of the
scene at the moment. At frame
359, P1 has re-entered the
scene. P3 has its GMM model
already trained and label L3
assigned. The bench as a static
occluder is being recovered
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Fig. 16 SCULPTURE data set
comparison. The middle column
shows the reconstruction with a
single foreground label. The
right column shows the
reconstruction with a label for
each person. This figure shows
that, by resolving
inter-occlusion ambiguities,
both the static occluder and
dynamic objects achieve better
quality

5.2.4 Dynamic Object and Occluder Inference

The BENCH sequence demonstrates the power of our auto-
matic appearance model initialization as well as the inte-
grated occluder inference of the “bench” as shown in Fig. 15
between frame 329 and 359. Figure 14 illustrates the status
of our scene tracking and modeling across time.

We also compute result for SCULPTURE sequence with
two persons walking in the scene, as shown in Fig. 16. For
the dynamic objects, we manage to get much cleaner shapes
when the two persons are close to each other, and more
detailed shapes such as extended arms. For the occluder,
thanks to the multiple foreground modes and the consider-
ation of inter-occlusion between the dynamic objects in the
scene, we are able to recover the fine shape as well. The oc-
cluder inference would otherwise be perturbed by dynamic
shape overestimations.

6 Discussion

6.1 Dynamic Object and Static Occluder Comparison

We have shown the probabilistic models and real datasets for
static and dynamic shapes inference. Although both types of
entities are computed only from silhouette cues from camera
views and both require the consideration of occlusions, they
actually have fundamentally different characteristics.

First of all, there is no way to learn an appearance model
for a static occluder, because its appearance is initially em-
bedded in the background model of a certain view. Only
when an occlusion event happens between the dynamic ob-
ject and the occluder, can we detect that certain appearance
should belong to the occluder but not the background, and
the occluder probability should increase along that viewing

direction. Whereas for dynamic objects, we have mentioned
and will show in more detail in the next section, that their
appearance models for all camera views could be manually
or automatically learnt before reconstruction.

Secondly, because occluders are static, regions in the 3D
scene that have been recovered as highly probable to be oc-
cluder will always maintain the high probabilities, not con-
sidering noise. This enables the accumulation of the static
occluder in our algorithm. But for the inter-occlusion be-
tween dynamic objects, it is just a one time instant event.
This effect is actually reflected in the inference formulae of
the static occluder and the dynamic objects.

Thirdly, a recovered dynamic object can be thought of as
a probabilistic visual hull representation, because it is after
all a fusion of silhouette information, based on (Franco and
Boyer 2005). However, the static occluder that we recover is
actually not a visual hull representation. In fact, it is an en-
tity that is carved out using moving visual hulls (of the dy-
namic objects), as shown in Fig. 2. Therefore, our estimated
occluder shape can maintain some concavities, as long as a
dynamic object can move into the concave regions and be
witnessed by camera views.

Finally, the computed static occluder shape is in a prob-
abilistic form. Its counterpart in the deterministic represen-
tation is given in Fig. 2. Since it is formed by carving away
dynamic shapes, it has some unique properties that are dif-
ferent from the traditional visual hull. Consider a dynamic
shape D with infinitesimal volume. We define an occluder
hull as an approximation volume to a static occluder re-
covered with a infinitesimal dynamic shape D moving ran-
domly in all accessible parts of the scene. It can be shown
that the occluder hull is the region of space visible to at
most one camera, including the inside of the actual occluder
shape. In Fig. 17(a) and (b), the thick black lines delineate
the occluder hull. In comparison, in Fig. 17(c) and (d), the
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Fig. 17 2D theoretical occluder
hull and visual hull.
(a) 3 camera occluder hull;
(b) 4 camera occluder hull;
(c) 3 camera visual hull;
(d) 4 camera visual hull.
Concavities can be recovered by
occluder hull

thick black lines delineate the visual hull of the occluder, as-
suming the silhouettes of the objects are known. The visual
hull is the intersection of all the silhouettes’ visual cones.

Figure 17 shows that contrary to the visual hull, the oc-
cluder hull can recover concavities. In fact, when cameras
are distributed all over space, the actual shape of an arbitrary
static occluder can be recovered. A finite number of cam-
eras may be sufficient to recover arbitrary occluder shapes
in certain cases. However, the occluder hull shape is highly
dependent on the camera placement. As (a) shows, the oc-
cluder hull may even not be closed. For occluder hull, there
is no lower bound number to guarantee a closed shape. Al-
though the occluder hull in (b) is closed, if the fourth camera
changes its orientation or position, the occluder hull may
be open again. On the contrary, only two silhouettes from
different views can guarantee a closed visual hull, which
is the minimum number of cameras required for a visual
hull. Given the above analysis, some empirical requirements
for good quality occluder estimation are summarized as fol-
lows:

– There is no guarantee that how many cameras would pro-
duce a closed occluder shape. But when the size of the
occluder is small relative to the camera focal length, or
the occluder position is so far from the cameras that the
region where only one camera can see the dynamic shape
is limited, a closed occluder shape can usually be recov-
ered with the proposed the algorithm.

– For a region behind the occluder, where no camera view
has sampled, the algorithm cannot infer any information.
For example, the algorithm does not recover the wall, if
a person is hiding completely behind it. In this case, the
person’s occupancy is not recovered in the first place. One
solution may be to add more camera views behind the
wall.

– Since the closed dynamic shape (needs at least two cam-
era views) is required by the algorithm, plus an occluded
view for the occluding incidence, in theory, the minimum
requirement for the occluder inference is three cameras.

6.2 Computation Complexity and Acceleration

The occluder occupancy computation was tested on a
2.8 GHz PC at approximately 1 minute per frame. The
strong locality inherent to the algorithm and preliminary
benchmarks suggest that real-time performance could be
achieved using a GPU implementation. We choose nVIDIA
CUDA pipeline, yielding a 15× speedup for the complete
algorithm. The dynamic shape computation alone reaches a
speed-up of more than 80 times and a speed of 0.2 second
per frame on the test machine, which is already satisfactory
for real-time applications.

Although it has gained reasonable speedup, the static oc-
cluder computation could not yet achieve interactive frame
rate (0.9 to 3.15 seconds per time instant), due to the high
computational cost for finding the dynamic components in
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front of and behind every voxel location. However, since
dynamic objects of adjacent frames often yield redundant
information, an interactive system can be obtained by up-
dating the occluder at a lower frequency.

The time complexity of our multiple dynamic shape plus
static occluder system is bounded by the dynamic object in-
ference, where viewing ray maximum probabilities for each
label need and each view need to be know. This means a
computation of O(nmV ), with n the number of cameras, m

the number of objects in the scene, and V the scene vol-
ume resolution. We process the multiple dynamic object se-
quences in Sect. 5.2 on a 2.4 GHz Core Quad PC with com-
putation times varying of 1 to 4 minutes per frame. The
very strong locality inherent to the algorithm and prelimi-
nary benchmarks suggest faster performance could be ac-
complished by a GPU acceleration.

6.3 Limitations and Future Works

There are a few limitations to our approach. First of all, al-
though the static occluder estimation is robust in a general
outdoor environment, it is not generally an alternative for
static object reconstruction purpose (although it works in
some cases, like the CHAIR sequence). This is because our
occluder inference is only based on occlusion cues, meaning
if there is no occlusion between a dynamic object with the
static occluder in a view, we cannot discover the occluder
shape. This is why we cannot recover the top of the pillar
and lamp post in Fig. 8. However, for dynamic scene analy-
sis, our main focus is on the dynamic objects, in this case,
our recovered knowledge about where a dynamic object may
possibly be occluded by a static occluder is very important.

Secondly, the dynamic shape GMM appearance mod-
els can be improved. If two persons with similar color ap-
pearances are in the scene, this is a problem to our current
scheme—it always introduce ambiguities to our dynamic
object inference scheme. In this case, the proposed track-
ing scheme and object location prior will be the main infor-
mation source to disambiguate individuals. But the track-
ing scheme can also be improved. The cylindrical object
location prior can be extended to more sophisticated struc-
ture/shape models that further enforce temporal consistency.

Finally, the optimal camera count and placement for ac-
quisitions in a given scenario could be the subject of further
studies.

7 Summary

In this paper, we have presented a complete approach to re-
construct 3D shapes in a dynamic event from silhouettes
extracted from multiple videos recorded using a geometri-
cally calibrated camera network. The key elements of our

approach is a probabilistic volumetric framework for au-
tomatic 3D dynamic scene reconstruction, which is robust
to many perturbations, including occlusion, lighting varia-
tion, shadows etc. It does not require photometric calibration
among the cameras in the system. It automatically learns
the appearance of the dynamic objects, tracks the motions
and detects surveillance events such as entering/leaving the
scene. It also automatically discovers the static occluder,
whose appearance is initially hidden in the background and
recovers its shape by observing the dynamic objects’ move-
ment in the scene over a given time period. Combining
all the algorithms described in this paper, it is possible to
develop a fully automatic and robust system for dynamic
scene analysis in general uncontrolled indoor/outdoor envi-
ronment.
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