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Abstract

City environments often lack textured areas, contain
repetitive structures, strong lighting changes and there-
fore are very difficult for standard 3D modeling pipelines.
We present a novel unified framework for creating 3D city
models which overcomes these difficulties by exploiting im-
age segmentation cues as well as presence of dominant
scene orientations and piecewise planar structures. Given
panoramic street view sequences, we first demonstrate how
to robustly estimate camera poses without a need for bundle
adjustment and propose a multi-view stereo method which
operates directly on panoramas, while enforcing the piece-
wise planarity constraints in the sweeping stage. At last, we
propose a new depth fusion method which exploits the con-
straints of urban environments and combines advantages of
volumetric and viewpoint based fusion methods. Our tech-
nique avoids expensive voxelization of space, operates di-
rectly on 3D reconstructed points through effective kd-tree
representation, and obtains a final surface by tessellationof
backprojections of those points into the reference image.

1. Introduction

Demand for low cost acquisition of large scale city 3D
models from a video stream taken from a moving vehi-
cle has been increasing. Such models have been of use
in many applications including navigation, driving direc-
tion pre-visualizations and augmented reality as demon-
strated in Google Earth or Microsoft Virtual Earth. The
city environments often lack textured areas, contain repet-
itive structures, many occlusions, strong lighting changes,
and cast shadows. These properties make vision-based 3D
modeling difficult in the sense of finding enough reliable
point matches between overlapping images so important
for following surface reconstruction. To overcome the ill-
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posed matching stage, as a remedy, laser scanners are often
used [8]. The availability of laser scans in extended urban
areas is still sparse and acquisition quite costly, compared
to the vast amount of geo-registered panoramic imagery as
provided by applications such as Google Streetview.

In this paper, we are interested in purely passive vision-
based 3D modeling. Previously proposed attempts [1, 11, 4]
each presents some variations and improvements of the
standard 3D modeling pipelines. Each pipeline typically
starts with image matching followed by pose estimation and
dense stereo, and ends up with a fusion of partial depth
maps into one consistent 3D model. The dense stereo part
is the most crucial part as the existing dense stereo methods
are in most cases pixel-based [16], working reliably on well
textured surfaces. Because of repetitive or no texture, the
state-of-the-art multi-view stereo methods,e.g. [9], when
applied in urban settings, lack depth estimates in many ar-
eas of uniform intensity and recovered planar surfaces are
slightly bumpy despite the smooth Poisson surface recon-
struction. Examples of various comparisons can be found
in [14]. Mapped textures therefore look locally deformed,
squeezed or prolonged, which results in jaggy projections
of rectilinear structures like windows, doors, see results
in [1, 11]. To avoid disadvantages of pixel-based stereo ap-
parent in urban settings, [4] assumes ruled surfaces models
of urban scenes, which enable to compute photoconsistency
similarity over line segments and hence reduce the stereo
matching ambiguities. This however makes the method un-
suitable for recovery of various vertical facade indentations.

To overcome the above mentioned drawbacks we there-
fore suggest to a priori exploit image segmentation cues as
well as presence of dominant scene orientations and piece-
wise planar structures. We employ those assumptions al-
ready in the dense matching and reconstruction stage, in
contrast to model based techniques which fit various primi-
tives,e.g. windows, walls, afterwards to reconstructed cloud
of points [5, 6]. The piecewise planarity allows any fa-
cade indentations, and moreover, to explicitly suppresse the
jaggy effect coming from the incorrect texture mapping. We
believe that locally line preserving texture mapping on a
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Figure 1. A city 3D model reconstructed from a car image sequence.

coarse planar 3D model often provides better visual expe-
rience than deformed textures on not completely or incor-
rectly reconstructed details.

The contribution of this paper is a unified and complete
pipeline for piecewise planar city 3D modeling from street
view panoramic sequences. Namely,i) we modify a method
for pose estimation to exploit beneficial properties of the
panoramic camera with one virtual optical center,ii) we
utilize dominant scene orientations and adopt superpixels
in a modified Markov Random Field (MRF) based dense
stereo reconstruction method, andiii) we introduce a new
depth map fusion algorithm combining advantages taken
from volumetric- and viewpoint-based fusion methods. Our
technique avoids expensive voxelization of space, operates
directly on 3D reconstructed points through an effective kd-
tree representation. As the result, a textured triangulated
surface mesh of an observed environment is obtained, see
an example in Fig. 1.

The structure of the paper is the following. The camera
model, matching, and pose estimation is explained in Sec. 2.
The camera poses are utilized in the superpixel dense stereo
method, outlined in Sec. 3. Partial depth maps are fused
by the algorithm described in Sec. 4. Examples of recon-
structed 3D models are discussed in Sec. 5.

2. Pose Estimation

Using standard cameras in urban scenes makes SfM very
difficult or impossible as the images often contain just one
plane (road or building facade), or most of the image is oc-
cluded by moving cars and pedestrians.

Let us assume that we have images acquired by standard
perspective cameras aligned in a circle, see Fig. 2 (a). We
create one panoramic image by warping the radially undis-

torted perspective images onto the sphere assuming one vir-
tual optical center. One virtual optical center is reasonable
assumption considering that the structure around the sen-
sor is very far compared to the discrepancy between opti-
cal centers of all the cameras. The sphere is backprojected
into a quadrangular prism to get a piecewise perspective
panoramic image, see Fig. 2. Our panorama is composed
then of four perspective images covering in total 360 deg
horizontally and 127 deg vertically. We do not use the top
camera as there is not much information. To represent the
panorama by using the piecewise perspective, rather than
often used cylindrical, projection contributes to better per-
formance of image point matching algorithms. The reason
is that their assumption of locally affine transformation be-
tween matched image regions is more feasible for perspec-
tive images than for the cylindrical panoramas.

We employ the SURF-based matching algorithm by [2]
between each consecutive image pair along the sequence.
The spherical, respectively prismatic, representation ofthe
omnidirectional image allows us to construct correspond-
ing 3D raysp,p′ for established tentative point matches
u ↔ u′. The tentative matches are validated through
RANSAC-based epipolar geometry estimation formulated on
their 3D rays,i.e. p′⊤

Ep = 0, yielding thus the essential
matrix E [10]. To treat the images as being captured by a
central omnidirectional camera is very beneficial in many
aspects. As the 3D rays are spatially well distributed and
cover large part of a space, it results in very stable estimate
of the essential matrix, studied in [3]. Moreover, improved
convergence ofRANSACcan be achieved if rays are sampled
uniformly from each of four subparts of the panorama. The
large field of view (FOV) especially contributes towards
better distinguishing of a rotation and translation obtained
from the essential matrix. The four-fold ambiguity remain-
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Figure 2. Acquisition device. (a) Point Grey Ladybugr camera.
(b) Quadrangular prismatic camera model with a virtual optical
centerC. (c) A panoramic piecewise perspective image as an
outer surface of the prism. An image pointu is represented by
a calibrated 3D vectorp.

ing after extracting the rotation and translation from the es-
sential matrix is solved by assuming that camera moves for-
ward.

For solving scales of translations between consecutive
pairs of images along the sequence we employed the fol-
lowing strategy. We set the norm of the translation for the
first pair to be 1. For each new image, the pose is estimated
from epipolar geometry between the new and previous im-
age. Scale of the translation is estimated by a linear closed-
form 1-point algorithm on corresponding 3D points trian-
gulated by DLT [10] from the previous image pair and the
actual one. This is possible because of the aforementioned
fact that the omnidirectional cameras, thanks to their large
FOV, give very stable pose estimate even from the epipolar
geometry. The estimate in this way offers poses accurate
enough even without bundle adjustment unless the baseline
is too small. The same observations were done by [18],
where they use the rotation coming from epipolar geome-
try and search not only for the scale but also for translation
proposing a 2-point algorithm. It differs from a well known
and often used technique [15] where full pose of the third
camera,i.e. the translation, its scale, and the rotation, is es-
timated through the 3-point algorithm. However, in case of
omnidirectional cameras, [18] reports superior performance
of using the epipolar geometry and reduced 2-point than the
full 3-point algorithm.

Fig. 3 shows an example of the pose estimation with
comparison to GPS data. Notice that the GPS position
can get biased or can contain small jumps, especially when
satellites in one half of the hemisphere are occluded by
nearby buildings. Moreover, the GPS itself does not pro-
vide rotation information unless it is equipped with a com-
pass. The visual odometry offers very good complementary
information to the GPS, and optimally, they should be com-
bined.

3. Superpixel stereo

Given the estimated poses we want to compute depths
for all pixels in each image along the sequence. Standard
multiview dense stereo methods, reviewed in [16], are well
conditioned in restricted scenarios. They lack robustnessor
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GPS
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Figure 3. Pose estimation. (a) Trajectory estimated by our method
from images (blue) and by GPS (green) visualized in the Google
Maps by the GPSVisualizer. Our trajectory is put into the world
coordinate system by aligning first two estimated poses in the se-
quence with the GPS. (b) Three images captured along the trajec-
tory at places marked in the map to the left.

produce inaccurate and incomplete models for many spe-
cific scenes like the urban ones. Ambiguities in the stan-
dard dense stereo pipeline are magnified when the scenes
lack textured areas, contain repetitive textures, and when
lighting varies dramatically across the views. We propose
to tackle those problems by utilizing unique properties of
the urban scenes, such as piecewise planarity and dom-
inant orientations to condition better the problem of the
3D structure estimation. It is shown that utilization of the
scene priors yields, compared to the standard dense stereo
pipelines [19, 9], more accurate and visually plausible re-
sults in many urban scenes. We have adapted the multiview
superpixel stereo method proposed in [14] to work directly
on prismatic panoramas and exploit additional priors related
to the knowledge of the camera and horizon line. The spa-
tial constraints between neighboring regions in panoramas,
enable us most effectively exploit the entire 360 deg hori-
zontal FOV. Let us briefly outline the main steps.

The depth map is estimated for each image in the se-
quence by taking consecutively each image as a reference
one while considering two previous and two next images.
The multiview stereo is thus solved on 5 consecutive im-
ages where the middle one is the reference image. First, the
image is pre-segmented into superpixels, see Fig. 4. The
superpixels have been used in the past extensively as inter-
mediate primitives in various formulations of image pars-
ing and object recognition tasks. This is due to the fact that
they often naturally correspond to semantically meaning-
ful object (scene) primitives/parts. In connection to dense
stereo the superpixels have been utilized by [17, 22] to dis-
ambiguate textureless areas,i.e. by enforcing pixels in de-
tected color-consistent regions to lie at the similar depth.
They use small superpixels and use them in the smoothness
term to regularize the estimate. While they still estimate
depth for each image pixel we assign one depth per entire
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Figure 4. Superpixel dense stereo. Left: A reference image seg-
mented into superpixels by [7]. Right: Concept of the sweeping
sketched up, for clarity, for a set of perspective cameras. In case
of omnidirectional images, just the quadrangular prisms would be
replaced for image planes. A superpixelS from the reference im-
age is swept along a corresponding projective ray byd with the
normaln and projected into other views in order to measure the
photoconsistency. It is analogous to applying a plane-induced ho-
mographyHk(n, d) on pixels inside the superpixel.

superpixel.
The goal is to find for each superpixel its depth and nor-

mal giving minimal photoconsistency error when project-
ing it into other views while considering smooth changes of
the depths and normals of the neighboring superpixels. We
search for a Maximum Posterior Probability (MAP) assign-
ment of a MRF, whose graph structure is induced by neigh-
borhood relationships between the superpixels. Formally,
we seek suchP∗ that

P∗ = argmin
P

[

∑

s

Ephoto + λ1

∑

s

Egeom+

λ2

∑

{s,s′}

Enorm + λ3

∑

{s,s′}

Edepth

]

, (1)

whereE’s stand for energies, discussed later,λ’s are their
weights,{s, s′} are neighboring superpixels, andP is a set
of all possible planes for allS superpixels,i.e. P = {Πs :
s = 1 . . . S} andΠs = [n⊤

s ds]
⊤ consists of a superpixel

normal and depth. In the MRF graph structure the super-
pixels s stand for graph vertices and pairwise connections
{s, s′} are established between all neighboring superpixels.

To make the NP-hard problem in Eq. (1) tractable we for-
mulate it as a discretelabeling problem on a graph with
fixed small number ofL labels per superpixel. This is ad-
vantageous compared to discretizing the space of dispari-
ties as typically done in MRF formulations of dense stereo
methods. Our labels correspond to planar hypotheses ob-
tained in the sweeping stage. We assume the Manhattan
world, i.e. we restrict number of plane normals to three or-
thogonal ones, captured by vanishing points. The vanish-
ing points can be detected automatically [12], however, it is
not always possible to find them reliably in all images. We
therefore propagate them and project them through known
camera poses to images where the detection is difficult.

A label ls for a superpixels corresponds to a possible

candidate for depth with a particular normal obtained in
the sweeping stage, conceptually shown in Fig. 4, as a lo-
cal minimum of the photoconsistency measure

Cs(n, d) =
1

|K|

∑

k∈K

(

χ2

sk + α‖cs − ck‖
2

)

, (2)

over the depthd. We typically consider 3 best minima as the
candidates at each out of three normal. The sum is evalu-
ated over all valid projectionsK of the superpixels in other
views. At each homography induced projectionHk(n, d)
a chi-squared color histogram andα weighted chromacity
difference is evaluated. Interior pixels of the superpixels
and itskth projection are first used to compute chromac-
ity vectorscs andck, second, to photometrically normalize
them (enforcing zero mean and unit variance per color chan-
nel). Integrating appearance over larger spatially mean-
ingful area of superpixels contributes to higher robustness
of the photoconsistency measure than widely used NCC,
SSD or SAD measures applied on small squared windows
in pixel-based stereo techniques. That allows to handle
much better the inaccuracies in pose estimates and lighting
changes across the views.

The photoconsistency termEphoto(s, ls) is then equal to
Cs(n, d) at the depth represented by the labells. The ge-
ometric termEgeom(s, ls) captures consistency of the su-
perpixel boundary to be parallel to a plane with the nor-
mal represented by thels. It is measured via deviation of
the gradient orientation of the pixels along the superpixel
boundary to two vanishing points. The smoothness term
Edepth(s, s′, ls, ls′), resp. Enorm(s, s′, ls, ls′), enforces a
smooth depth, resp. normal, transition between neighbor-
ing superpixels{s, s′}. Due to space limitation, detailed
description of the energy terms can be found in [14].

The MAP of the MRF enforcing neighborhood relation
is solved by [20] twice in two iterations. First iteration gives
the rough estimate of the 3D layout of the scene and thus
offers a prior on scene depths. The prior is then combined
with the photoconsistency measure in Eq. (2) to obtain new
more reliable depth candidates used to rebuild the weights
in the MRF whose MAP gives the final solution. Com-
pared to [14] we utilize two additional constraints. First,
we employ point matches established in the pose estima-
tion stage, described in Sec. 2. If the superpixel contains
at least 2 matches reconstructed at similar depth the search
for depth candidates is restricted to a small band including
those depths. Second, the depth of a road can be reliably
detected after the first iteration as the most dominant depth
in the direction of the vertical normal. The depth of the
road directly restricts the depths of other superpixels as we
enforce everything to lie above the road. This significantly
helps to eliminate many incorrect depth candidates found in
the sweeping stage and yields a much more accurate result.

Fig. 5 shows one of the dense stereo result on the middle



Figure 5. A depth map. Left: Estimated normals superimposed
into the input reference image. Color encodes the index of the
assigned normal where black color stands for undecided pixels.
Right: Depth estimates encoded by color saturation. Further the
superpixel is estimated along the assigned normal in darker color
it is depicted. Notice that most of the planes in the scene got su-
perpixels assigned to the correct normal and depth (same depth is
indicated by the same color saturation). Best viewed in color.

image from Fig. 3 (b). One can see that most of the super-
pixels are assigned the correct normal and depth. Some of
them got undecided because of too high cost in any deci-
sion. Nevertheless, the incorrectly or not estimated places
are treated and filtered out by the fusion step described in
the following section.

4. Fusion of Depth Maps

Given the depth maps for all images along the sequence,
like the one shown in Fig. 5, we want to fuse them and build
one consistent 3D model represented by a triangulated sur-
face mesh. In many instances we expect that raw stereo
depth maps are mutually redundant and contain many er-
rors and do not completely agree with one another.

To fuse the multiple depth maps there are volumetric
or the viewpoint-based approaches. The volumetric ap-
proaches,e.g. [21], voxelize 3D space and in probabilistic
framework, each depth votes for the voxels along the cor-
responding projective ray. The final surface is estimated as
an isosurface usinge.g. the Marching Cubes or using graph
cuts. There are techniques sampling the 3D space more ef-
ficiently by using Octrees but still, those methods are very
memory and computationally expensive. We want to repre-
sent large area where voxel number would be enormous and
their processing too time demanding. We instead pursue a
viewpoint-based approach. The most similar approach to
ours is [13] which renders multiple depth maps into the ref-
erence view as well as renders the reference depth map into
the other views in order to detect occlusions and free-space
violations and to find a closest stable depth.

Since we have three dominant normals used in the depth
map estimation step, it allows us to split the fusion into three
steps and process together only the points on the same nor-
mal without mutual interaction. As oppose to the rendering
of the depth maps as in [13], we propose to perform the
fusion on the reconstructed 3D points to better handle inac-
curacies in the depth estimates. This strategy is motivated
by successful voxel-based approaches working in 3D space
while here avoiding the space voxelization. We utilize the
kd-tree data structure which can be favorably utilized to ef-

Figure 6. Filtering stage. The images show a top view of the re-
constructed cloud of 3D points from a set of 10 consecutive depth
maps (the set starts from the middle image in Fig. 3 (b), the car
is in the middle of a road crossing). Only points assigned to two
normals which are perpendicular to vertical facades are shown.
The red dot in the middle with a short line represents the position
of the reference image and moving direction of a car. Left: An
initial reconstruction of points containing many spurious outliers.
Right: Filtered points. Only stable 3D points having supported by
multiple depth maps survived and were justified.

fectively traverse point neighbors. The fusion strategy isas
follows. Set the counterk := 1.

1. ConsiderM consecutive images with their depth maps
starting at the indexk and choose the middle image as
being the reference one.

2. Reconstruct 3D points from all points in the provided
depth maps and transform them by known camera
poses into the coordinate system of the reference im-
age. Construct three kd-trees, each from the 3D points
belonging to one out of three normals.

3. For each 3D point, find (utilizing fast kd-tree opera-
tion) points with the same normals inside a sphere with
a pre-defined radius centered at that point. Project the
points onto a normal vector and compute a mean of the
projections. Replace the point by the new mean value
only if there are at least 3 other points inside the sphere
coming from different depth maps. Otherwise, remove
the point as being an outlier. See Fig. 6.

4. Project the filtered 3D points back into the reference
view. Merge those projections falling into the same
image pixels, triangulate them, and assign the means
over 3D points which correspond to the merged pro-
jections to 3D coordinates of triangle vertices. Store
color of each vertex as the color of its projection in
the reference image. Special attention need the points
under the car. They are used for triangulation to get
consistent surface but the corresponding color is taken
from an image 3 steps backwards. Finally, the triangles
having in 3D at least one side longer than some thresh-
old are removed. Those triangles correspond usually
to places not reliably reconstructed, at occlusions or
depth changes.



Figure 7. Detailed views on the 3D model from Fig. 1.

5. Store triangulated 3D vertices with their colors and set
k := k + M/2. If it is the first consideredM -tuple,
continue with the step 1.

6. Fuse the actual 3D mesh with the previous one by
the following strategy. Take out the 3D points in a
predefined band around a plane perpendicular to the
line connecting optical centers of the actual and the
previous reference image. Merge those points from
actual and previous mesh which are mutually close
enough, average their positions and color, and update
both meshes. Again, the kd-tree is used to significantly
speed up the search for the nearest neighbors. Finally,
discard the 3D points and corresponding triangles out-
side the band which are closer to the previous reference
view.

The use of one reference image and projecting the fil-
tered 3D points into it is very advantageous. It allows to
triangulate the projected points in the image plane and thus
avoids the need of expensive and problematic voxel based
surface extraction methods. We useM = 10 in our experi-
ments.

5. Experiments

We present results on two street-view sequences1, each
consisting of 200 panoramic images taken about2 m apart.
For the pose estimation we use full resolution of the images
2560 × 904 pixels, but for the dense stereo we downsam-
pled the panoramas by factor 4. The first sequence is cap-
tured along a U-shaped trajectory. Three of its images and
pose estimation are shown in Fig. 3 and the final 3D model
in Fig. 1. Most of the seen facades and road surface are
nicely reconstructed and together with mapped texture the
method provides visually appealing model. The 3D models
are visualized in the free MeshLab tool.

The second, L-shaped, sequence is more challenging
as it contains many trees, moving cars, and pedestrians.
See Fig. 8 for the entire 3D model. Fig. 9 depicts a part

1Provided and copyrighted by Google.

Figure 9. An image from the second sequence and the detail on the
3D model at this part. The are many trees to the right of the car,
reconstructed as planar surfaces.

of the scene with pedestrians and trees. The trees are typ-
ically reconstructed as planar surfaces and pedestrians are
automatically removed in the fusion stage unless they are
static. The moving cars occlude substantial part of the road
and may cause holes in the final model, depending on their
speed.

The obtained 3D model, Fig. 7, with locally line preserv-
ing texture mapping is often sufficient for 3D visual experi-
ence of the environment. Moreover, notice in both models
nicely reconstructed road surface throughout the entire se-
quences despite the road being weakly textured. Although
at the moment we do not handle explicitly non-planar struc-
tures, such as cars and trees, they can be properly handled
by integrating a detection / recognition module as done for
the cars in [4].

The reconstruction of the facades perpendicular to the
camera motion is poorly conditioned compared to the fa-
cades parallel to the motion. This is due to the fact that the
forward motion of the vehicle places epipoles at the center
of front and rear views of the panorama and for the pix-
els close to epipoles large changes in depth cause small
displacement in the image, making many depth hypothe-
ses equally likely. Our suggested superpixel representation
partially overcomes these problems by explicitly merging
crucial pixels with those further away from the epipoles and
hence reducing the likelihood of many spurious hypotheses.

6. Conclusion

We have presented a 3D modeling pipeline of urban envi-
ronments from a sequence of images taken by a set of cam-
eras mounted on a moving vehicle. We have modeled the
acquisition setup as an omnidirectional camera with one vir-
tual optical center and achieved robust visual odometry esti-
mate without a need for bundle adjustment. In order to han-
dle difficult, usually textureless, urban scenes, we have uti-
lized image segmentation cues and dominant scene orienta-



Figure 8. Entire 3D model reconstructed from the second sequence.

tions for a dense stereo reconstruction. A partial piecewise-
planar models of the scene are fused by a proposed novel
method into one textured triangle surface mesh.

Our suggested pipeline offers a powerful alternative to-
wards handling of the difficult urban scenes. The sug-
gested approximation of observed scenes by piecewise pla-
nar models captured by superpixels usually results in more
visually pleasing texture mapping than the standard ap-
proaches. However, the use of superpixels may be limited
at places no well described by local planar patches. In those
cases, the superpixels can be further down-segmented, in
limit, approaching pixel-based dense stereo approaches.
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