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Abstract. We present an interest region operator and feature descrip-
tor called Center-Surround Distribution Distance (CSDD) that is based
on comparing feature distributions between a central foreground region
and a surrounding ring of background pixels. In addition to finding the
usual light(dark) blobs surrounded by a dark(light) background, CSDD
also detects blobs with arbitrary color distribution that “stand out”
perceptually because they look different from the background. A proof-
of-concept implementation using an isotropic scale-space extracts fea-
ture descriptors that are invariant to image rotation and covariant with
change of scale. Detection repeatability is evaluated and compared with
other state-of-the-art approaches using a standard dataset, while use of
CSDD features for image registration is demonstrated within a RANSAC
procedure for affine image matching.

1 Introduction

One of the key challenges in object recognition and wide-baseline stereo match-
ing is detecting corresponding image regions across large changes in viewpoint.
Natural images tend to be piecewise smooth, and most small image regions
are therefore near-uniform or edge-like; ill-suited for accurate localization and
matching. Although larger regions tend to be more discriminative, they are more
likely to span across object boundaries and are harder to match because view
variation changes their appearance.

The idea behind interest region detection is to find patches that can be re-
liably detected and localized across large changes in viewpoint. State-of-the-art
approaches include regions that self-adapt in shape to be covariant to image
transformations induced by changing rotation, scale and viewing angle [1]. To
date, the majority of interest region detectors search for image areas where local
intensity structure is corner-like (containing gradients of several different orien-
tations) or blob-like (exhibiting a center-surround contrast difference). Since it
is not possible to predict apriori the spatial extent of interesting image struc-
tures, detection is often performed within a multiresolution framework where
the center and size of interesting regions are found by seeking local extrema of
a scale-space interest operator.

Our work is motivated by the goal of finding larger interest regions that
are more complex in appearance and thus more discriminative. We seek to im-
prove the utility of larger image regions by using a feature descriptor that is
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Fig. 1. Detection results for a yin-yang symbol. The leftmost picture shows results from
CSDD region detection, which captures the hierarchical composition of the object by
correctly finding blobs at the three characteristic scales. The smaller images at right
show, from top left to bottom right, the original image and results from five other
detectors: Harris-affine, Hessian-affine, IBR, MSER and the Salient region detector.
Only the CSDD detector captures the natural location and scale of the symbol.

insensitive to geometric deformation. Specifically, we develop an interest region
operator and feature descriptor called Center-Surround Distribution Distance
(CSDD) based on comparing empirical cumulative distributions of color or tex-
ture extracted from a central foreground region and a surrounding ring of back-
ground pixels. The center-surround nature of the approach makes it a variant of
blob detection. However, in comparison to typical center-surround schemes that
measure difference in average feature contrast, our approach is based on fine-
grained histograms of the feature distributions in the central and surrounding
regions, compared using a distance measure that takes into account not only the
intersection of mass in overlapping bins but also the ground-distance between
non-overlapping bins.

Our long-term goal is to develop a method capable of extracting entire objects
as interest regions, since we believe that this kind of figure-ground separation
is needed to make progress in extremely wide-baseline matching scenarios. Al-
though we cannot rely on objects and their surrounding background as having
uniform intensity, the distribution of color and texture on an object often dif-
fers from that of the background, and thus a center-surround approach to blob
detection using feature distributions should have applications to figure-ground
segmentation in addition to interest region detection (Fig. 1).

Related Work

A vast literature exists on local feature detection. Of particular interest are
detectors that generate features covariant to image transformations [2–7]. Lin-
deberg studied scale covariant features extensively in his seminal work on scale-
space theory [8]. Recent work considers affine covariance to cope with broader
types of image deformations. Mikolajczyk and Schmid propose affine covariant
detectors based on local image statistics characterized by Harris and Hessian
matrices [6]. Tuytelaars and Van Gool incorporate edge information into the
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local image structure around corners to exploit geometric constraints that are
consistent across viewpoint [4]. Matas et al. extract blob-like maximally stable
extremal regions (MSER) whose borders remain relatively unchanged over large
ranges of greyscale thresholding [5]. Bay et al. use integral images to build a fast
and effective interest point detector and descriptor [7].

Kadir et.al. define a region saliency score composed of two factors: Shannon
entropy of local intensity histograms, and magnitude change of intensity his-
tograms across scale. Scale-space maxima of the entropy term identify regions
with complex, and thus distinctive, greyscale structure. The inter-scale term
serves to both downweight salience at edges, as well as promote the salience of
blob-like regions. Indeed, if implemented as a finite difference approximation,
this term becomes L1-distance of histograms across scale, which can be inter-
preted as a center-surround difference operator applied to multi-channel data.
Similar center-surround ideas have long been used in salience detection. Itti
and Koch [9] apply a Difference-of-Gaussian filter to each channel of a feature
map to mimic receptive cell response and salience detection in human vision.
More recently [10], color histograms extracted within rectangular central and
surrounding regions are compared using the χ2 distance as one component to
measure the salience of the central region.

To find a distinctive representation for detected interest regions, various re-
gion descriptors have been developed. Histograms are a simple yet effective rep-
resentation. Histograms of intensity, color, gradient of intensities [11], and other
filter responses are prevalent in vision. Refer to [12] for an extensive discussion
on measuring the difference between two histograms.

2 CSDD Features

This section presents an overview of our proposed CSDD feature for interest
region extraction. An implementation-level description is provided in Sect. 3.

2.1 Center-Surround Distributions

Given a random variable f defined over a (possibly real and multi-valued) feature
space, we define its empirical cumulative distribution function (hereafter referred
to simply as a distribution function) within some 2D region of support of the
image I as

F (v) =

∫

x∈R

δ(I(x) ≤ v) w(x)dx /

∫

x∈R

w(x)dx (1)

where δ(·) is an indicator function that returns 1 when the boolean expression
evaluates to true, and 0 otherwise, R is the real plane, and w(x) is a spatial
weighting function defining the spatial extent of the region of support while
perhaps emphasizing some spatial locations more than others. For example, a
rectangular region with uniform weighting can be defined by

w(x, y) = δ(a ≤ x ≤ b) · δ(c ≤ y ≤ d), (2)
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darker areas denote higher weights

Fig. 2. Weight functions for accumulating center-surround distributions are formed
by decomposing the Laplacian of Gaussian ∇2G(x; x0, σ) into weight functions
wC(x;x0, σ) defining a central circular region of radius

√
2σ and wS(x;x0, σ) defin-

ing a surrounding annular region. Specifically, wC − wS = ∇2G.

whereas

w(x) = exp{− (x − x0)
t(x − x0)

2σ2
}

specifies a Gaussian-weighted region centered at point x0 with circular support
of roughly 3σ pixels radius. Now, consider two regions of pixels comprised of
a compact central region C and a surrounding ring of neighboring pixels S.
Fig. 2 illustrates the center-surround regions we use in this paper. The center
region is circular, and the surround region is an annular ring. These regions
are defined by weighting functions based on an isotropic Laplacian of Gaussian,
∇2G(x0, σ), with center location x0 and scale parameter σ. Specifically, letting
r = ‖(x−x0)‖ be a distance from the center location x0, the center and surround
weighting functions, denoted wC and wS , respectively, are defined as:

wC(x; x0, σ) =







1

πσ4

(

1 − r2

2σ2

)

e−r2/2σ2

r ≤
√

2σ

0 otherwise
(3)

wS(x; x0, σ) =







− 1

πσ4

(

1 − r2

2σ2

)

e−r2/2σ2

r >
√

2 σ

0 otherwise
(4)

These nonnegative weighting functions coincide with the positive and negative
channels of the LoG function, with the positive channel being the central portion
of the “Mexican hat” operator, and the negative channel being the annular ring
around it. Thus wC −wS = ∇2G. Since the LoG operator integrates to zero, we
know that the positive and negative channels have equal weight. Integrating in
polar coordinates, we find that

∫ ∫

wC(·) r dr dθ =

∫ ∫

wS(·) r dr dθ =
2

e σ2
(5)

This term 2/(e σ2) becomes the normalization factor in the denominator of (1)
when we extract feature distributions using wC and wS .
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Why We Don’t Use Integral Histograms: Integral histograms are often
used to extract feature histograms of rectangular regions efficiently [13]. We
choose not to use them for the following reasons:

• Integral histograms require space proportional to storing a full histogram at
each pixel. Therefore, in practice, integral histograms are only used for coarsely
quantized spaces. We use finely quantized feature spaces where histograms have
hundreds of bins, making the integral histogram data structure very expensive.

• Generating rectangular center-surround regions at multiple scales using
integral histograms can be viewed as equivalent to generating a scale space by
smoothing with a uniform box filter. It is well-known that smoothing with a
box filter can lead to high-frequency artifacts. We prefer to use LoG filtering
to generate a scale-space that is well-behaved with respect to non-creation/non-
enhancement of extrema [8].

• Integral histograms lead to rectangular center-surround regions, aligned
with the image pixel array axes. They are not a good choice for rotationally-
invariant processing. Our approach yields circular center-surround regions that
are rotationally invariant, and a minor modification yields anisotropic elliptical
regions (see Sect. 4.1).

2.2 Center-Surround Distribution Distance

Consider two feature distributions F and G computed over the center and sur-
round regions described above. Intuitively, if the feature distributions of F and
G are very similar, it may be hard to visually discriminate the central region
from its surrounding neighborhood, and this central region is therefore a bad
candidate to use as a blob feature. On the other hand, if distributions F and
G are very different, the central region is likely to be visually distinct from its
surroundings, and thus easy to locate. Our hypothesis is that regions that look
different from their surroundings are easy to detect and match in new images of
the scene taken from a different viewpoint.

Many dissimilarity measures are available to compare two cumulative dis-
tributions F and G, or density functions dF and dG. In practice, information
theoretic measures such as χ2 distance or Bhattacharyya coefficient for com-
paring two density functions are problematic since they only take into account
the intersection of probability mass, not the distance between masses [14]. For
example, using these measures to compare greyscale density functions repre-
sented as histograms with 256 bins, an image patch with uniform value 0 looks
as different from a patch with uniform value 1 as it does from a patch with uni-
form value 255. This makes such measures unsuitable for use when viewpoint or
lighting variation cause shifts in the underlying intensity/color of corresponding
image patches. Kolmogorov-Smirnov or Kuiper’s test [12] based on comparing
cumulative distribution functions F and G are more robust in this regard, as
well as being applicable to unbinned data. In this paper, we use Mallow’s dis-
tance, also known as Wasserstein’s distance, and in the present context equiva-
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lent to the Earth Mover’s Distance (EMD) [15]. Mallow’s distance between two
d-dimensional distributions F and G can be defined as

Mp(F, G) = min
J

{

(EJ‖X − Y ‖p)
1

p : (X, Y ) ∼ J, X ∼ F, Y ∼ G
}

(6)

where the minimum is taken over all d × d joint distributions J such that the d
dimensional marginal distribution wrt X is F , and the marginal wrt Y is G. In
general, finding this minimum is equivalent to solving the Monge-Kantorovich
transportation problem via, for example, the simplex algorithm [14, 16].

In this paper we use the known but still surprising result that, despite it’s in-
tractability in general dimensions, for 1D distributions the transportation prob-
lem is solved as

Mp(F, G) =

(
∫

1

0

|F−1(t) − G−1(t)|p dt

)

1

p

(7)

and that, for p = 1, there is a closed form solution that is the L1 distance
between cumulative distributions F and G [15, 17] :

M1(F, G) =

∫

∞

−∞

|F (v) − G(v)| dv (8)

Although restricting ourselves to 1D distributions seems to be a limitation, in
practice it comes down to approximating a joint distribution by a set of 1D
marginals. We take care to first transform the original joint feature space into
an uncorrelated one before taking the marginals (see next section), and also
note results from the literature that show the use of marginals outperforming
full joint feature spaces when empirical sample sizes are small [15]. We feel that
any drawbacks are more than made up for by the ability to use finely quantized
marginal distributions while still computing an efficient, closed-form solution.

3 An Implementation of CSDD

We now describe a specific practical implementation of CSDD feature extrac-
tion. Like many current detectors, the CSDD detector operates over a scale-
space formed by a discrete set of scales. At each scale level, center-surround
distributions are extracted at each pixel and compared using Mallow’s distance
to form a CSDD measure. The larger the CSDD value, the more dissimilar the
center region is from its surrounding neighborhood. We therefore can interpret
these dissimilarity scores within the 3D volume of space (center pixel) and scale
(sigma) as values from a scale-space interest operator (see Fig. 3). Similar to
other detectors, we extract an interest region for each point in the volume where
the interest function achieves a local maximum across both space and scale, as
determined by non-maximum suppression with a 5x5x3 (x, y, σ) neighborhood.
Each maxima yields the center point (x, y) and size σ of a center-surround region
that we can expect to detect reliably in new images. We choose not to do spa-
tial subsampling at higher scales to form a pyramid, but instead keep the same
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Fig. 3. Sample regions extracted as local maxima of the CSDD interest operator at
one scale level. Left: Original color image. Middle: CSDD interest score computed for
each pixel, over center-surround regions of scale σ = 9.5 pixels. Overlaid are the 30
most dominant peaks at this scale level, displayed as circles with radius

√
2σ. Right:

Interest regions identified by these peaks.

number of pixels at all scale levels. Therefore, features at all scales are spatially
localized with respect to the resolution of the original pixel grid, with no need
for spatial interpolation.

What remains to be seen is how to generate the scale-space volume of CSDD
interest values efficiently. As discussed in the last section, Mallow’s/EMD dis-
tance can be solved in closed-form if we are willing to approximate a joint RGB
distribution using three 1D marginals. To make approximation by marginals bet-
ter justified, we first transform the color space into a new space where the three
random variables representing the color axes are roughly uncorrelated. A simple
linear transformation of RGB color space due to Ohta [18] yields a set of color
planes that are approximately uncorrelated for natural images. The transforma-
tion is I1 = (R + G + B)/3, I ′

2
= R − B, I ′

3
= (2G − R − B)/2. Although the

Jacobian of this transformation is one, individual axes are scaled non-uniformly
so that color information is slightly emphasized (expanded).

We implement the integral in (8) as the sum over a discrete set of sampled
color values. Unlike typical histogram-based approaches, we avoid coarse quan-
tization of the feature space or adaptive color clustering. Instead, we sample
values finely along each of the marginal color feature axes. In our current im-
plementation, each axis is quantized into 128 values, yielding a concatenated
feature vector of size 384 to represent the color distribution of the center region,
and another vector of the same size representing the surround region.

The heart of the distribution distance computation thus involves computing
F (v) − G(v), the difference between cumulative distributions F and G for a
sampled color space value v. Referring to (1) and (5) for the definition of how
each distribution is computed and for the value of the normalization constant
associated with our two center-surround weight functions wC and wS , and the
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fact that, by construction, wC − wS = ∇2G, we see that

F (v) − G(v) =

∫

R2 δ(I(x) ≤ v) wC(x)dx
∫

R2 wC(y)dy
−

∫

R2 δ(I(x) ≤ v) wS(x)dx
∫

R2 wS(y)dy
(9)

=
eσ2

2

∫

R2

δ(I(x) ≤ v) [wC(x) − wS(x)] dx (10)

=
eσ2

2

∫

R2

δ(I(x) ≤ v) ∇2G(x; x0, σ) dx (11)

Although we have compressed the notation to save space, distributions F and G
are also functions of pixel location x0 and scale level σ, the center and size of the
concentric central and surrounding regions of support. Since we want to explicitly
compute a difference value for every pixel, the center-surround difference F (v)−
G(v) for all pixels at one scale level becomes convolution of the binary indicator
function δ(I(x) ≤ v) with a LoG filter of scale σ.

An important implementation detail is how to perform efficient LoG filtering,
particularly since we have to perform it many times, once for each of a set of
finely sampled values v and at each scale level σ. Standard convolution with a
2D spatial LoG kernel takes time quadratic in the radius of the support region.
While a separable spatial implementation would reduce this to linear time, this
is still expensive for large scale levels. Our implementation is based on a set of
recursive IIR filters first proposed by Deriche and later improved by Farneback
and Westin [19, 20]. These fourth-order IIR filters compute the Gaussian and its
first and second derivatives (and through combining these, the LoG operator)
with a constant number of floating point operations per pixel, regardless of the
spatial size σ of the operator.

Although there is a superficial similarity between our implementation and
greyscale blob detection by LoG filtering, note that we are filtering multiple bi-
nary masks formed from a fine-grained feature distribution and combining the
results into a distance measure, not computing a single greyscale convolution.
Our approach measures Mallow’s distance between two distributions, not differ-
ence between average grey values. It is fair to characterize the difference between
our method and traditional LoG blob detection as analogous to using a whole
distribution rather than just the mean value to describe a random variable.

4 Experimental Validation

As discussed, we compute a distance between empirical cumulative feature dis-
tributions to measure how similar a circular central region is in appearance to
its surrounding annular ring of pixels. Our hypothesis is that regions that look
markedly different from their surroundings are likely to be good features to use
for detection and matching.

One important aspect of an interest region detector’s performance is repeata-
bility of the detections. This measures how often the same set of features are
detected under different transformations such as changes in viewing angle or
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lighting. In Sect. 4.1, we adopt the framework of [1] to compare repeatability
of our detector against other state-of-the-art approaches. Moreover, it is also
desirable for extracted regions to have high descriptive power. In Sect. 4.2 we
demonstrate the utility of CSDD features for correspondence matching under
affine image transformation.

4.1 Repeatability experiments

We test the repeatability of our detector using the standard dataset for eval-
uation of affine covariant region detectors.1 CSDD regions are detected by the
procedure discussed in Sect. 3. To improve the accuracy of scale estimation, for
each detection corresponding to a local maximum in the 3D volume of space and
scale, we do a 3-point parabolic interpolation of CSDD response across scale to
refine the peak scale and response value. We also compute the Hessian matrix of
responses around the detected points at each scale level. This matrix of second
order derivatives is used for two purposes: 1) to remove responses due to ridge-
like features [11]; and 2) to optionally adapt our circular regions to ellipses, using
the eigenvectors and eigenvalues of the Hessian matrix to define the orientation
and shape of an ellipse constrained to have the same area as the original circular
region of support. Although this is a much simpler and coarser ellipse fitting
method than the iterative procedure in [1], it does improve the performance of
the CSDD detector for large viewpoint changes. We refer to this version of the
implementation as the elliptical CSDD (eCSDD), to distinguish it from the orig-
inal circular CSDD (cCSDD). We also set a conservative threshold on CSDD
response score to filter out very weak responses.

The evaluation test set consists of eight real world image sets, generated by
image transformations with increasing levels of distortion, such as view angle,
zoom, image blur, and JPEG compression. For each reference and transformed
image pair, a repeatability score is computed as described in [1]. Fig. 5 compares
repeatability results from our CSDD detector against the five detectors evaluated
in [1]. We outperform the state of the art in three out of the eight test cases
(the orange line in Fig. 5b,c,d) and achieve comparable results for the others,
even though our detector is designed to handle only isotropic scale and rotation
changes. Two of the three cases where we outperform all other detectors are the
ones that test ability to handle large amounts of zoom and rotation. For cases
where viewpoint changes induce a large amount of perspective foreshortening,
elliptical adaptation improves the performance (Fig. 5a).

We show elliptical CSDD regions side-by-side with regions from the best-
performing state-of-the-art comparison detector for two sample cases in Fig. 4.
In both cases, the CSDD regions are able to capture the meaningful structures
in the scene such as the green leaves in the bark image and the windows on the
boat. Our region density is of relatively similar order as MSER, EBR, and IBR
detectors. For more details on the region density and the computational cost of
CSDD feature detection, please refer to our website 2. We did not include the

1 http://www.robots.ox.ac.uk/∼vgg/research/affine/ as of March 2008.
2 http://vision.cse.psu.edu/projects/csdd/csdd.html
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CSDD (428/18) CSDD (474/18) Hessian (493/11) Hessian (495/11)

CSDD (743/41) CSDD (238/41) MSER (1524/179) MSER (653/179)

Fig. 4. Regions found by CSDD (left) and the comparison detector (right) for two
pairs of test images. The detected regions that fall within the common image area are
in yellow. The corresponding regions are in red. Each image is labeled with the total
number of detections within the image versus the number of correspondences found in
both of the images. Top: Regions found in bark images differing by a scale factor of 4.
Bottom: Regions found in boat images differing by a scale factor of 2.8.

performance curve of the salient region detector [2] because of its absence in the
online evaluation package and its consistently low rank for most of the cases in
this repeatability test, according to [1].

4.2 Matching experiments

Ultimately, the best test of a feature detector/descriptor is whether it can be used
in practice for correspondence matching. We ran a second series of experiments
to test the use of CSDD features to find correspondence matches for image regis-
tration. To demonstrate the robustness and the discriminativeness of the original
circular CSDD regions, we do not include the elliptical adjustment procedure in
this matching test. A simple baseline algorithm for planar image registration
was used, similar to the one in [21]. The method estimates a 6-parameter affine
transformation matrix based on RANSAC matching of a sparse set of feature
descriptors. In [21], corner features are detected in each frame, and a simplified
version of the linear assignment problem (aka marriage problem) is solved by
finding pairs of features across the two images that mutually prefer each other
as their best match, as measured by normalized cross-correlation of 11x11 inten-
sity patches centered at their respective locations. This initial set of candidate
matches is then provided to a RANSAC procedure to find the largest inlier
set consistent with an affine transformation. We modify this basic algorithm by
replacing corner features with our CSDD features, and replacing image patch
NCC with average Mallow’s distance between the two center distributions and
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Fig. 5. Comparison of repeatability scores between the circular cCSDD detector, the
elliptical eCSDD detector, and five other state-of-the-art detectors (the Harris- and
Hessian-affine detectors, the MSER detector, the edge-based detector (EBR), and the
intensity extrema-based detector (IBR)) for the eight image sequences from the stan-
dard evaluation dataset[1].
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Fig. 6. Affine Ransac Image Matching Experiments. Row 1: four frames from a parking
lot video sequence, showing affine alignment of bottom frame overlaid on top frame.
The full video sequence of results is provided on our website. Row 2: left to right:
shout3 to shout4; shout2 to was2 (images courtesy of Tinne Tuytelaars); stop sign;
snowy stop sign. Row 3: kampa1 to kampa4 (images courtesy of Jiri Matas); bike1 to
bike6; trees1 to trees5; ubc1 to ubc6. Row 4: natural textures: asphalt; grass; gravel;
stones.
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two surround distributions of a pair of interest regions. Note that use of CSDD
features is a vast improvement over single-scale (11x11) corner patches in terms
of being able to handle arbitrary rotation and scaling transformations.

Sample results of this baseline matching algorithm are shown in Fig. 6. Higher
resolution versions of these pictures along with more examples and a complete
video sequence of matching results on the parking lot sequence are provided on
our website 2. The use of circular CSDD regions limits our performance under
out-of-plane rotations. Although we can get more matching features on tilted
planes if we use elliptical adaptation and relax the inlier distance threshold, im-
ages with large amounts of planar perspective foreshortening should be handled
with a homography-based match procedure.

5 Discussion

We have presented a new scale-space interest operator based on center-surround
distribution distance (CSDD). The method finds rotationally invariant and scale
covariant interest regions by looking for locations and scales where empirical cu-
mulative distributions between a central region and its surrounding local neigh-
borhood are dissimilar. The proposed approach performs competitively on the
standard evaluation test for affine covariant region detectors, where it outper-
forms the state-of-the-art in three out of the eight scenarios. We have also tested
the use of CSDD as a feature descriptor within a RANSAC-based affine image
matching framework. In our experience, we find that CSDD feature extraction
and matching works well on textured, natural images, and performs very well
under large changes of scale and in-plane rotation.

While the use of Mallow’s/EMD distance is resilient to some changes in
lighting, large illumination changes currently defeat our baseline matching al-
gorithm. This is partly due to the simplified marriage problem solution of only
picking pairs of candidate features that are mutually each other’s best match.
With large changes in lighting, it is often the case that some other feature patch
becomes a better match in terms of intensity/color than the correct correspon-
dence. Matching based only on color distributions, without taking into account
any spatial pattern information, is a brittle approach, and our results can be
viewed as surprisingly good in this regard. Our ability to match at all, using
only “color histograms”, is due to the fact that we finely quantize the color
spaces, and use a robust measure of color similarity. However, a practical system
would also need to incorporate additional feature descriptor information, such as
SIFT keys computed from normalized patches defined by CSDD spatial support
regions [22].
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