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ABSTRACT
Dance is a dynamic art form that reflects a wide range of
cultural diversity and individuality. With the advancement
of motion-capture technology combined with crowd-sourcing
and machine learning algorithms, we explore the complex
relationship between perceived dance quality/dancer’s gen-
der and dance movements/music respectively. As a feasi-
bility study, we construct a computational framework for
an analysis-synthesis-feedback loop using a novel multime-
dia dance-music texture representation. Furthermore, we
integrate crowd-sourcing, music and motion-capture data,
and machine learning-based methods for dance segmenta-
tion, analysis and synthesis of new dancers. A quantitative
validation of this framework on a motion-capture dataset of
172 dancers evaluated by more than 400 independent on-line
raters demonstrates significant correlation between human
perception and the algorithmically intended dance quality
or gender of synthesized dancers. The technology illustrated
in this work has a high potential to advance the multimedia
entertainment industry via dancing with Turks.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Learning

Keywords
Dance perception; Crowd-sourcing; Motion-capture;
Dance-texture; Feature selection; Regression;
Dance-texture synthesis; Animation

1. INTRODUCTION
As digital media comes of age, massive multi-media data

sets have become commonplace while computational tools
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to discover their intricate relations are scarce. With the in-
troduction of crowd-sourcing technology, human perception-
driven algorithms become more feasible. In social (non-
choreographed) dance, perception by others plays an im-
portant role to our understanding of social dynamics among
dancers and viewers. Our goal in this work is to develop
a computational framework and associated tools for dance
perception, driven by active, on-line audience participation.
The feasibility of our framework has been validated on a
multi-media, multi-dimensional data set composed of mo-
tion capture data of 172 Jamaican dancers of both genders
free-dancing to the same music. Our initial investigation fo-
cuses on the dance quality (good, bad) and dancer’s gender
(masculine, feminine), since the perception of these two at-
tributes has a direct impact on social dynamics reflected in
social dance across different cultures.

We combine a suite of signal processing, machine learning,
animation and social media technology to discover mappings
between human dance perception and a set of measurable,
isolatable and controllable human body joint parameters.
More specifically, from an initial set of 25 human ratings per
dancer, we use a weakly supervised learning method to learn
dance ability and dancer’s gender discriminative features
composed of subsets of body joints (angular displacement,
velocity and acceleration) and to construct a multivariate re-
gression model that captures human-perceived dance quality
and dancer’s gender. We then employ these learned features
as “control knobs” for music-motion-correlated dance seg-
ments to synthesize ability or gender-targeted new dancers.
To close the loop, the synthesized dancers are re-evaluated
via crowd-sourcing by hundreds of online Mechanical Turk
workers (Figure 1). The main contributions of our work:
(1) a novel machine learning-based, human perception-driven
computational framework for dance analysis, synthesis and
validation from multimedia data (music, motion-capture data
and human ratings);
(2) a novel spatiotemporal dance texture and music texture
joint representation, and a novel dance texture synthesis al-
gorithm, confirmed to be visually convincing by Mechanical
Turks with statistical significance;
(3) an effective human-in-the-loop initiative that uses crowd-
sourcing both as an initialization for machine learning and as
a validation for the dance analysis and synthesis algorithms
(Figure 1).



Figure 1: The outline of our multi-media computational framework: after computing the synchronization between the

raw mocap and music data (Section 3.1) we (1) obtain a set of initial human ratings via crowd-sourcing on dance ability

and dancer’s gender; (2) input both synchronized mocap/music data and the human ratings for analysis (Section 3.2),

where we discover, automatically, the most discriminative human joint feature subsets (D: displacement, V: velocity,

A: acceleration) for dance ability and dancer’s gender respectively; (3) synthesize targeted new dancers (for example: a

level-5 (highest level) dancer or a female dancer) using learned discriminative body joint features (Section 3.3); and (4)

feed the newly synthesized targeted dancers to on-line human raters (the Mechanical Turks) for re-evaluation of dance

ability and dancer’s gender (Section 3.4). Finally, we compare the statistical consistency between human perception

and the intended/targeted dancer’s ability and gender (Table 2).

2. RELATED WORK
“Human in the loop” applications span many research dis-

ciplines from the creation of simulation software like flight
simulators to the more active solicitations of human feedback
for image retrieval [37, 27]. Using crowd-sourcing to improve
the performance of computer vision algorithms has become
more feasible in recent years, especially for those data sets
with visually distinct objects, such as identification of birds,
and parts of a bird1. Many research disciplines such as ma-
chine learning, mathematical optimization, automatic con-
trol, cyber-physical systems, and autonomic computing rely
on feedback to achieve goals such as autonomy, learning,
adaptation, stabilization, robustness, or performance opti-
mization2. Our effort differs from these in that the human
perception of dance we use is at a general impression level
instead of specific object instance/parts or feature labeling
by the human users. The localization details (which body
joints) are learned automatically in our work. Many mo-
tion perceptual experiments are relevant to our work, dating
back to the famous Johannsson Experiments [14], particu-
larly those perceptual experiments on gender classification
[16, 30]. There is also a vast literature on automatic motion
analysis techniques [8] beyond the scope of this paper.

Previous work in style transfer (e.g. transforming from
“happy” to “sad” while preserving walking to location A) has
looked at applying user-specified style to an existing motion
sequence [34, 13, 32, 7, 28], or existing style in a motion
capture database to new motion paths [12, 1, 15, 17, 26,
33, 36]. Most of the recent techniques build a graph struc-
ture out of large amounts of motion capture data [1, 15] and

1http://www.vision.caltech.edu/visipedia/
2The Feedback Computing workshop 2013

have been inspired by earlier systems in speech recognition
[23], video face animations [4], and video textures [29]. Re-
lated to style transfer are methods that integrate stylistic
variables into generative models to synthesize stylized mo-
tion directly. Brand and Hertzmann [3] modeled style and
content using HMMs whose emission distributions depend
on stylistic parameters learned from data. More sophisti-
cated models have been introduced using other HMM exten-
sions, Gaussian Processes and hierarchical models applied to
style variations [18, 35, 25]. The most complex architecture,
based on so called “deep networks”, has been introduced by
Taylor and Hinton using explicit stylistic variables to mod-
ulate the interactions of binary latent variables modeling
dynamics and real-valued variables representing pose [31].

Different from example-based motion synthesis, our work
depends on fuzzy input from human raters that may or may
not agree with each other. We face both the question of
how to use such inconsistent labeling as well as figuring out
what body motion attributes dominate human perceptual
evaluation.

Directed graphs have been used, e.g. [15], as a primary
motion/dance representation with edges corresponding to
clips of motion and nodes as choice of connecting points.
Other dance representations are typically one dimensional
along the time axis [18, 26]. Our dance texture proposed in
this work is a true 2-dimensional image (Section 3.1). Our
dance texture synthesis algorithm is the first to adapt the
“Markov properties”, employed in image-based near-regular
texture synthesis [11, 19, 22], into a multimodal audio-spatio-
temporal dance texture space.



3. OUR APPROACH
We start with a given piece of music, Elephant Man, sam-

pled at a standard 44.1 kHz stereo, and a set of asynchro-
nized motion capture (mocap) data of 172 Jamaican (teenage)
dancers of both genders (equal distribution) free-dancing to
the same music3. Independently, we collected 25 human
ratings for each dancer on both the perceived dance-ability
and the perceived gender, where each human rater is shown
a replay of a dancer’s mocap data on a computer screen, and
asked to provide a score between 0 (female) and 1 (male) for
gender; and a score between 1 (bad) and 5 (good) for dance
quality or dancer’s ability. We use the average of ability
(gender) ratings for each dancer in our subsequent analysis.

Our goal is to develop computational means that can (1)
learn the most discriminative body-joint features for regres-
sion models best corresponding to human ratings; (2) use
this knowledge to generate new dancers with intended dance
ability or gender; and (3) validate the synthesized dancers
via human perception using independent human raters (Me-
chanical Turks).

To facilitate the discovery of the intricate relationships
between human perception and the body movements, we
first propose a spatiotemporal representation of mocap data,
Dance Texture (Figure 2), and synchronize the 2-dimensional
dance texture with the 1-dimensional music texture along
the time axis.

Figure 2: Left: The 18 body joints captured by the
motion capture data. Right: A dance texture of
three layers, Paxis(time, joints), axis : X,Y, Z, captur-
ing joint rotation angles about each axis. P is a 2D
frieze-like pattern/image, extending along the (hor-
izontal) time axis bilaterally centered about the four
mid-body-joints: neck, spine, abdomen, and pelvis.

3.1 Dance Texture and Music Texture
Dance Texture
Since human motion capture (mocap) data captures joint ro-
tation angles about the corresponding joint axes X,Y, Z re-
spectively [5, 24], we define a dance texture Paxis(time, joints),
where axis : X,Y, Z. Each Paxis is 2D frieze-like pattern ex-
tending along the time axis horizontally from left to right
(Figure 2). Since the human body presents a natural bi-
lateral symmetry, we place the left-right body joints cor-
respondingly around the four mid-body joints. Each point
on the dance texture Paxis denotes the twist angle value
about its rotation axis X(Y,Z), represented here in the
color scheme of [R,G,B]. Each column of Paxis(time = i, :)
represents a pose of the dancer at time i and each row of

3We obtained the raw motion capture dataset from [6] where
it was used for human visualization only.

Paxis(:, joint = j) represents the angular values of a specific
body joint j along time axis. For simplicity, we sometimes
omit the rotation axis indicator X,Y, Z in Paxis(i, j) by sum-
ming by up all twist angles at i,j as P (i, j).
Music Texture
When transforming music input into the frequency domain
using conventional Fourier transform, the frequencies cor-
responding to integer multiples of 0.44 Hz and 0.88 Hz i.e.
harmonics of 0.44 Hz, stand out in the music power spectrum
and the average dancer power spectrum respectively (Fig.3
(A)). This clearly suggests that the music and the dancers
have commensurate periodicity and the ratio between the
fundamental frequencies is 2 (0.88 Hz/0.44 Hz).
Dance Texture and Music Texture Synchronization

The corresponding periods in the dance and music tex-
tures are captured computationally, while the alignment be-
tween dance and music remains ambiguous. Exploring dif-
ferent body joints, a strong correlation between the feet sep-
aration and the up-beat is observed and captured compu-
tationally. Since the music and body-motion signals have
shared cycle lengths, we only need to compute the offset
within a single period T . The beat signal b(t) is obtained by
passing the music signal through an anti-aliasing low pass fil-
ter and then downsampling to the same 30Hz sampling rate
as the mocap data. The music beat signal (down sampled),
between-feet distance and their correlations are displayed in
Figure 3 (B).

3.2 Analysis
To further explore the discriminative power of body joints

in relation to human ratings, we define and extract measure-
ments from dance texture beyond angular joint values.
Dance Texture Features

We extract from three types of dance textures: angular
Displacement (D), angular Velocity (V), and angular Ac-
celeration (A). Given a dance texture P d(i, j) for a specific
dancer d with i indicating the frame number (time) and j
body joint, the total number of raw features is 3 (D,V,A)
×18 (body joints) ×# frames = 54 × # frames (Figure
2). One approximation of these features is an accumulated
movement of each joint j ∈ [1...18] over the entire dance
segment: P d

Σ(j) =
∑n

i=1 P
d(i, j) and all the possible subsets

of 18, from a single joint to nine joints (and their comple-
ments), to form our initial feature set F d

Displacement short

as F d
D: |FD| =

∑9
j=1

(
18
j

)
= 155, 381. Including angular

displacements (D), angular velocity (V) and acceleration (A)
measurements in an analogous manner, we obtain a feature
set F d

DV A, short as F d with |F d| = 155, 381× 3 = 466, 143.
Since every dance has the same set of features, we can drop
d and use F to express this total feature set from dancer
mocap data of 172 data points (dancers) where each data
point has 466,143 feature dimensions.
Dimensionality Reduction for Regression

Given the distribution of human ratings (green circles in
Figure 6) for dance quality and dancers gender respectively,
we propose to construct a linear regression model to ap-
proximate human perceptual labels. It is obvious that some
dimensionality reduction of the dance-texture feature set F
is necessary for us to learn and compute a model captur-
ing the most relevant parameters of human perception of
dance. We have experimented with multiple methods for
dimensionality reduction in this work. We can summarize



(A) (B)

Figure 3: (A) Using the conventional Fourier transform spectral method to show representative power spectra
of the music and the mocap of the dancers. The red line corresponds to the intensity averaged across all
172 dancers. The green dotted lines indicate the two regions where the integrated intensity is correlated to
dancer ability. (B) Alignment of the music (30Hz sampling rate, top), between-feet distance (30Hz sampling
rate, middle), and correlation score (bottom).

Figure 4: Eigenvalues versus Eigenvectors plot from
a principle component analysis (PCA) of the dancers
mocap data set. For dimensionality reduction, we
experimented with taking the top 8 and top 18
eigenvectors to construct two corresponding linear
regression models (Figure 6).

them into two basic categories: Principle Component Anal-
ysis (PCA)-based and machine learning-based methods.
PCA-based: For dimensionality reduction, we apply Prin-
ciple Component Analysis on the raw mocap features of an-
gular displacements for all subjects. Figure 4 shows the
eigenvalue versus eigenvector plot. Using the top-8 (73%
variance) and top-18 (91.33% variance) eigenvectors respec-
tively, we built and evaluated two linear regression models
against human ratings (Tabel 1, Figure 6). We pick top-8
eigenvectors since previous works using PCA methods re-
port 8 principle components (PCs) as sufficient for captur-
ing human motions such like gaits; and top-18 is due to the
fact that 18 different body joints are captured in the dance
mocap data set (Figure 2). It is worth noting that PCA
is an unsupervised approach for data analysis, thus the hu-
man ratings associated with the data set play no role in the
construction of the PCA-based linear regression models.
Machine Learning-based: Supervised learning is an ac-
tive branch of research in general machine learning to au-

Table 1: Comparisons of three regression models
measured by Root-Mean-Squares (RMS) against hu-
man ratings, the RMS value is the smaller the bet-
ter. Also see Figure 6.

PCA (variance captured) Ability Gender

Top-8 Eigenvectors (73.72%) 0.0077 0.0321
Top-18 Eigenvectors (91.33%) 0.0048 0.0218

Proposed Method 0.0009 0.0087

tomatically find the most discriminative features that sep-
arate different classes of data given the class labels [2]. In
our case, perceptual ratings of multiple human raters are
readily available, the average ratings are however not nec-
essary discrete ‘class labels’ to train a classifier. We have
experimented with two discriminative feature subset selec-
tion measures, which are used to select the highest ranked
features to construct linear regression models for predicting
human ratings on dance quality and dancer’s gender respec-
tively, achieving dimensionality reduction at the same time.
Learning-based Method #1: The first method is to find
a continuous correlation value between human ratings and
feature values in the dance-texture feature set F . For a
feature of dancer d, fd ∈ F , its relation to perceived rating
Rd

gender of dancer d can be expressed as: f = a×Rgender +b,
and solved for a, b using all dancers. A (R, p-value) pair can
thus be computed for all features f ∈ F and used to rank
all features by their correlation value R to the perceived
dancer ability or gender ratings respectively. We then pick
the top N features as the most discriminative features for
gender (dance ability) separation and build a pair of linear
regression models that are quantitatively compared with the
PCA-based regression models above (Table 1, Figure 6).
Learning-based Method #2: Alternatively, we train a
set of binary-class classifiers by modifying the given human
ratings. We sample a data subset where only the dancers
with human ratings in the extreme ranges (say thresholds at
ratings > 75% as class 1 and ≤ 25% as class 0) are chosen,
and use them to form a binary classification problem with
discrete class labels.



We use an augmented variance ratio (AVR) as a criteria to
compute and rank discriminative features for these two clas-
sification problems (ability and gender) respectively. AVR is
a variant of Fisher criterion [10] and has been used in many
other biomedical image applications, e.g. [20, 21]. To
make the features more compact, we perform PCA on the
top N most discriminative features. A multivariate linear
regression model is then constructed using the PCs found
above. This regression model is trained and cross-validated
using leave-one-out (LOO) on the same dance segments (500
frames/segment) the MTurkers have rated. We have ob-
tained the average error rates of 12± 8.6% for dance ability
and 14.58± 10.66% for gender.

The machine learning-based methods have helped us to
gain new insights on the human perception of dancers:
(1) Which body features are important?
Figure 5 illustrates three different feature selection results
demonstrating, qualitatively and quantitatively, which body
joints and what type of joint measures (Displacement, Veloc-
ity, Acceleration) are discriminative for human perception of
dancer quality and/or dancer’s gender.
(2) How to label/rate a given dancer algorithmically that
mimics a human rater?
The regression models built from the selected discriminative
features provide a higher level, dance quality/dancer’s gen-
der predictor that maps an arbitrary length of dance (mocap
data) into a pair of perceptual labels. This function will be
used extensively in our new dance synthesis algorithm next.
Automatic Dance Texel Segmentation and Rating

As a result of music texture and dance texture synchro-
nization (Section 3.1), we are able to segment a dance tex-
ture into a sequence of equal sized dance-texture texels
along the time axis. Dance-texture texels are the smallest
dance-texture units, each of which has the length of one
music beat/measure (Figure 3), that can also be used as
the building blocks for synthesizing new dancers. Since each
dance texel is a short dance (one measure long), we can map
it to the discriminative feature space and use our machine
learning-based linear regression model to rate each dance
texel on its dance quality and its dancer’s gender. As a
result, we have a collection of dance texels that are unit
length and are automatically labeled in both dance quality
and dancer’s gender.

This computational decomposition of a long dance texture
into small pieces (texels) of short dances, and the semantic
labeling of each dance texel play a crucial role in: (1) Per-
ception – each dance/dancer can be viewed as a composition
of many dance texels; each texel can have its independent
labels in dance quality and dancer’s gender. Thus, during
a long dance, it is possible to perceive a dancer as some-
times good and sometimes bad, sometimes more masculine
and sometimes more feminine; (2) Synthesis – these dance
texels, associated with their own ratings from our learned
regression model, form the perfect dance texture synthesis
building blocks to generate new dancers with the desired per-
ceptual effect. Therefore, the dance-synthesis process with
desired perceived gender and ability becomes a dance-texel
composition procedure of mixing and matching texels from
different dancers selectively.

3.3 Synthesis
A unique aspect of our approach is to treat dance as a

2D texture, enabling the generation of a new dance via tex-

Dance Ability Dancer Gender

(1) AVR, single joint (2) AVR single joint

(3) Histogram, combined (4) Histogram, combined

(5) correlation, combined (6) correlation, combined

Figure 5: Using D (displacement), V (velocity), and

A (acceleration) body joint features, we demonstrate

the most discriminative features learned algorithmically

using three different computable measures. (1, 2) are

the single joint features (D,V,A) ranked and color-coded

(red: most discriminative) by its respective Augmented

Variance Ratio (AVR). (3,4) are combined-joint fea-

tures evaluated using the histogram of the most selected

(highly frequent) body joint features (from ten random

splits of data into training/testing subsets). (5,6) are

the feature ranking results from the correlation between

feature-subset (D,V,A) values and the human raters la-

bels. Several corresponding body joint features are

found across three different discriminative feature selec-

tion measures. For example, all three find that left and

right knee displacement and ankle velocity/acceleration

in particular are most discriminative for dance quality;

while the right (and left) wrist joint angel displacement,

the head/neck angle velocity/acceleration, abdomen an-

gle displacement, and pelvis angle velocity/acceleration

(mostly upper body joints) highly discriminative for

dancer’s gender perception. Interestingly, many of these

automatically found, discriminative joint features are

also acknowledged by some human raters (Table 2).



(A) Dance Ability Regression Models (B) Dancer Gender Regression Models

Figure 6: We compare our proposed supervised-learning-based linear regression model against non-supervised
PCA-based dimensionality reduction linear models, where different top-N eigenvectors with the highest
eigenvalues are used (top-8, top-18). The horizontal axes above are ranked dancers in non-decreasing order
of their average human ratings (25) of dancer ability and dancer’s gender respectively: bad dancer=0, good
dancer=1; female=0, male=1. The three overlaid linear regression model plots, two from PCA-method
using top-8 and top-18 eigenvectors respectively and one from our feature-selection method, illustrate that
our proposed machine learning-based regression models align the best with human perception of dancers in
terms of their dance ability and demonstrated gender; while our dance ability regression model has a better
fit with human ratings than the regression model for dancers genders. Table 1 shows the root-mean-square
(RMS) measures between these regression models and human ratings. It is worth noting that (1) the average
human ratings (green circles) are not strictly linear either for dance quality (left) or for dancer’s gender
(right); and (2) the average accuracy of human gender rating with respect to dancers’ true genders (red dots)
is only 64.78%± 7.6%.

Figure 7: The user interface where the dance ability and gender of the synthesized dancer can be controlled
and visualized. Each colored-square corresponds to a dancer with ranked (color-coded) label for dance quality
or for dancer gender. The synthesized dance transits across smoothened dance texels/patches from different
dancers (see the two color bars in transition coming out for the plane.



ture synthesis. The analogy between creating new, targeted
dance animations from existing mocap data and image-based
texture synthesis on 2D textures is motivated by the similar-
ity of a common goal: to generate new (synthesized) texture
samples that are visually and statistically similar to the given
texture’s regularity [11, 19, 22]. Dance texture/texel plays
the similar dual function of representing spatial transforma-
tions (18-body-joint motion space) as well as a 2D color-
image such like the geometric deformation-field texture does
in the near-regular texture synthesis algorithm [19]. We map
back and forth between a 2D dance texture and a motion
space, guided by the intended/targeted semantic ratings.

Different from general texture synthesis however, the reg-
ularity of a music texture guides us to segment a dance tex-
ture into unit-length dance texels. The basic idea for our
dance texture synthesis algorithm is: given a desired level
of dance ability (gender), our algorithm generates a piece
of dance texture that meets the goal by choosing from the
candidate dance texels with the highest visual similarity as
well as the closest gender or dance quality compatibility.
Dance Texture Synthesis Method

We have developed a novel similarity function for imple-
menting a dance texture synthesis algorithm, adapted from
image quilting [11] and near-regular texture synthesis [19,
22]. Here we define a texture patch as a pair of consecu-
tive texels for the use of feathering during the synthesis pro-
cess. The two-texel-length patches are used to achieve feath-
ering for smooth transitions between dance patches over-
lapping on one texel. The similarity function for the best
matched patches requires: 1) compatibility between consec-
utive patches and 2) class (ability or gender) and level (high
or low) compatibility of each patch. The compatibility of
the consecutive patches determines the smoothness of the
dance; if tolerance in pixel-wise overlapping texels differ-
ence is too high (e.g. > 0.5 degree), the resultant dance
motion may contain abrupt rotations. Hence, we first ran-
domly pick and filter dance patches for compatibility to yield
smooth body motion transitions. Second, as the classifica-
tion of each patch determines the perceived rating of the en-
tire dance, we filter out patches with undesired rankings. In
addition, higher weights are placed on the more perception
discriminative body joint features (Figure 5), leading to a
body joint-sensitive similarity metric. Figures 7 and 8 show
the dance texture synthesis process and the interface where
the dance ability and dancer’s gender are controlled inde-
pendently. The texture synthesis process has three steps:
1) patch-finding for most similar texel pairs, 2) patch pool
screening for a specified targeted rating, and 3) feathering
adjacent patches for smooth dance movement transition.
Synthesize Dance To New Music
Let the basic period of origin music be T0; to synthesize
dancing with music having a different basic period T we re-
sample (warp) the dancing texture with ratio T/T0 to make
the dancing faster or slower to go with the new music. The
same alignment is done as described in the pre-processing
stage.

Sample movies of synthesized dancers can be found here:
http://vision.cse.psu.edu/research/MTurkDancing/index.shtml

3.4 Human Perception Validation
We validate the results of our dance synthesis with crowd-

sourcing. Mechanical Turk (MT) provides a general plat-
form for deploying units of informational labor (called hu-

man intelligence tasks, or HITs) to users on the Internet who
are paid for their efforts. Our user interface, built in Flash,
functions in the same way for the dance quality and dancer
gender assessments (Figure 9). At the beginning, the user
is shown a sample video that contains thumbnail versions
of four dances. The dance quality of these dances cover the
extreme ends of our 1-5 range. The user is required to watch
the sample video for 20 seconds and can then begin the la-
beling task. For each assessment, a single video is shown.
The user can click the quality or gender radio buttons at
any time and change the answer any number of times, but
the ‘Next’ button is disabled until 20 seconds have elapsed.
The user repeats this for 10-12 assessments before the HIT
is over. The order of the sample videos is randomized per
user. For the gender assessment task the order of the videos
is randomized and the order of male/female buttons is also
randomized at the start of each HIT.

To ensure rating consistency, we have each user perform
assessments twice, though the user is not informed of this
fact. This is similar to an approach used previously [9] in
which all shape perception HITs were presented twice to
each MT user as means of assessing consistency. In our
case, we ask for 5 or 6 unique assessments, and each appears
twice. Numerical consistency of the user is computed as
the average of the squared differences between each pair of
responses. The number lets us assess user consistency on a
relative scale per task. We can then remove all data from
users who have highly inconsistent scores.

A user could complete the task in a trivially consistent
way by always clicking the same response. Therefore, we
also look at the variance of a user’s assessment scores. If
the variance is too low, the user is either not attempting
the task in earnest, or is failing to see significant differences
between the input videos.

A final metric we can use for assessing the work quality
is the ’click time.’ Because we built the assessment inter-
face, we are free to track numerous details of the user in-
teraction, including timing information and tentative, non-
final responses. If the user clicks a particular answer, then
changes the answer, this is recorded and sent to our server,
including the amount of time that has passed with each click.
We want the user to form his/her opinion based on a rea-
sonable length of video, not just a couple seconds. So we
can throw out any work by users who click their final as-
sessment too quickly. We do not penalize users for making
multiple assessments or for making a non-final assessment
too quickly.

To turn the aggregated MT results into an assessment of
our ability to synthesize videos, we look at the correlation
(R) between our targeted scores and MT assessed scores.
We perform thresholding as described above to exclude dis-
qualified HIT results, and then compute the correlation on
the remaining values with a null-hypothesis that there is no
correlation between the intended synthesized dancer qual-
ity/gender and human ratings. The numerical results shown
in Table 2 suggest strong agreement between our synthe-
sized dancers ability/gender and human raters; especially
for dance quality assessment where the correlation score is
strongly linear (R-value = 0.7251) and statistically signifi-
cant (p-value is very low). Dancer’s gender assessment from
the MTs shows significant positive correlation with the com-
puter targeted dancer genders, but the linear relationship is
only moderate (R-value = 0.451).



Figure 8: Dance-synthesizer at work: the bottom three rows demonstrate the three dynamic dance
textures (Displacement, Velocity and Acceleration); top right displays the user desired dance qual-
ity; the two sliders below show the original data point (dancer) information of both perceived
dance quality and perceived dancer’s gender. Movies of synthesized dancers can be found here:
http://vision.cse.psu.edu/research/MTurkDancing/index.shtml

Figure 9: The interface for Mechanical Turk

4. SUMMARY AND DISCUSSION
We have proposed an effective framework for music and

motion capture dance analysis, synthesis and evaluation. We
have built a dance-synthesizer (Figure 8) and we have val-
idated this framework on a mocap dataset containing 172
dancers, an asychronized piece of music, 25 initial human
raters and more than 400 independent online raters.

Quantitative results from Table 2 provide a justification of
our approach and its outcome. Starting with human input,
analyzing the mocap data in a weakly supervised manner,
and synthesizing the dancers based on learned discrimina-
tive features, we have produced promising output (synthe-
sized dancers with certain targeted ability/gender scoring)
that are confirmed by the human raters at a statistically
significant level.

Table 2: Summary of the Mechanical Turk Assess-
ments of Synthesized Dancers

Dance Quality Dancer Gender
Total HITs 302 260

Unique workers 232 189
(effective size)
Accepted HITs 244 200

R-value 0.7251 0.451
P-value 3e-216 0

4.1 Motivated Raters
From a large amount of enthusiastic feedback of MTs

(samples are shown in Table 3), it seems obvious that the
raters are highly motivated: they personalize the computer
(synthesized) animated dancers and treat the evaluation as a
form of entertainment. These positive reactions are encour-
aging signs that dancing with Turks has a high potential to
become a human-computer interactive game. With the sup-
port of the advanced technology, we expect our work lead to
a rewarding experience for both the dancers and the actively
participating audience (raters).

4.2 Dancer Ability versus Gender Perception
To our surprise, human perception of gender from dance

animation (motion alone) of real dancers turns out to be
rather challenging. From the 25 initial raters, the human



Table 3: Sample Comments from Anonymous Mechanical Turks (Gender, Age-range, Country, Self-rating, Comment)

F,31-40,CA,4, “One of the most interesting HIT’s I’ve done yet. You have made me very curious as to your study/project.”
M,25-30,IN,3, ”Its bit difficult to find out the gender. ”
F,18-24,US,1, ”The videos looked super cool!”
M,25-30,IN,4, ”Awesome job TNT”
F,31-40,US,1, ”I think the males tend to dance with pelvis forward”
M,25-30,US,3, ”Most of the dances seemed to have a salsa tone to them.”
F,18-24,US,4, ”This hit was AWESOME!!!!”
M,31-40,IN,4, ”WANT MORE HITS LIKE THIS”
M,18-24,AU,2, ”Love the last dance.”
F,31-40,IN,3, ”It was a nice entertainment.”
M,18-24,IN,4, ”great animated dance”
M,31-40,BE,1, ”This was a nice HIT to do. What will you use it for exactly?”
M,18-24,PH,3, ”the hands determine my choice of the dancers gender.”
F,18-24,US,1, ”The music used is addictive!”
M,41-50,US,5, ”professional theatrical dancer. None earned a 5 for me. Criteria Used:

level of energy exhibited, range of motion, variety in patterns”
M,18-24,CA,4, ”good movements , to me the best ones were the ones where it starts slow and requires a lot of

foot work with some body movements as it goes with the music”
F,41-50,US,2, ”amusing”
M,31-40,CA,3, ”great job! Lots of fun !”
F,31140,CA,4, ”Great HIT! Don’t know if it helps, but I find usually women are more inclined to make larger movements,

and cover more floor space than men when dancing. ”
M,25-30,IN,3, “Its bit difficult to find out the gender. However,i have done my best.Tnx”
M,51-60,US,2, ”Wow, very interesting!!!”
F,18-24,US,1, ”Fun to watch!!”
M,18-24,PH,4, ”Awesome!These is great!Love it very much.Break hit!”
M,41-50,US,1, ”I thought the animations were awesome and I actually was learning moves by watching”

gender classification rate is 64.78% ± 7.6% with approxi-
mately equal performance on both genders. For computers,
discriminating and synthesizing gender specific subjects is
also less agreed up by MTs than controlling the levels of
dance quality (Table 2). This challenge may arise from the
nature of gender as a binary variable; a 0.5 rating value in
ability means the dancer is an average dancer, while a 0.5
value in gender means ‘either’ male or female, therefore the
variance is potentially much higher. In the context of rela-
tively easy recognition of gender through human gaits [14],
this issue of gender recognition in free-form dancing is of
high social and scientific interest.

4.3 Future Work
So far, we have explored the gender and dance ability of

a dancer separately. Future work to test our methodology
will include both gender and dance ability jointly. Finding
the dance texture patch that matches both ratings the best
within the training data pool allows the resultant motion to
have more than one controllable characteristic.

Furthermore, although we closed the loop in this work in
one cycle, our learning-evaluation cycle can continue evolv-
ing. Synthesized results can further be reclassified by human
raters (Section 3.4) and fed back into our analysis/learning
system. This will allow the machine to learn and adjust it-
self accordingly over time, as if in a back-and-forth dance
with the Turks.
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