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ABSTRACT

We propose a quantified asymmetry based method for age es-

timation. Our method uses machine learning to discover auto-

matically the most discriminative asymmetry feature set from

different brain regions and image scales. Applying this re-

gression model on a T1 MR brain image set of 246 healthy

individuals (121 females; 125 males, 66 ± 7.5 years old), we

achieve a mean absolute error of 5.4 years and a mean signed

error of -0.2 years for age estimation on unseen MR images

using the stringent leave-15%-out cross validation. Our re-

sults show significant changes in asymmetry with aging in

the following regions: the posterior horns of the lateral ven-

tricles, the amygdala, the ventral putamen with a nearby re-

gion of the anterior inferior caudate nucleus, the basal fore-

brain, hyppocampus and parahyppocampal regions. We con-

firm the validity of the age estimation model using permuta-

tion test on 30 replicas of the original dataset with randomly

permuted ages (with p-value < 0.001). Furthermore, we ap-

ply this model to a separate set of MR images containing

normal, Alzheimer’s disease (AD) and mild cognitive impair-

ment (MCI) subjects. Our results reflect the relative severity

of brain pathology between the three subject groups: mean

signed age estimation error is 0.6 years for normal controls,

2.2 years for MCI patients, and 4.7 years for AD patients.

Index Terms— age estimation, deformable registration,

Alzheimer’s disease

1. INTRODUCTION

Changes in brain asymmetry due to normal aging or a patho-

logical neurodegenerative processes can provide insights into

brain development and help identify an onset of a neurologi-

cal condition early [1]. Brain asymmetry has been the focus

of many recent studies on both cross-sectional and longitudi-

nal datasets [2, 3, 4, 5]. The limitations of these studies are

that they require time and labor intensive process of manually

delineating brain structures, or they do not focus on such cru-

cial informative features as size and shape asymmetry of the

brain structures.
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We propose a machine learning based method that ex-

plores the age-related changes in human brain asymmetry. It

uses a comprehensive set of 11.5 million deformation and ten-

sor based asymmetry features computed for every voxel at 4

image scales. Our method combines the strengths of the ex-

isting approaches and eliminates many of their limitations.

First, our analysis takes into account differences not only in

size, but also in shape and location of anatomical structures.

Second, it can handle hundreds of subjects and millions of

features. Third, the learned age estimation model can be eas-

ily evaluated on unseen data. Finally, our method does not

require human intervention.

2. DATA

Our dataset consists of structural T1 MR images of 246 sub-

jects. These images were acquired on GE 1.5T Signa scan-

ner between 1999 and 2004 at the University of Pittsburgh

Alzheimer’s Research Center. The spoiled gradient-recalled

(SPGR) volumetric T1-weighted pulse sequence was used

with the following parameters, optimized for maximal con-

trast among gray matter, white matter, and CSF: TE = 5ms,

TR = 25ms, flip angle = 40, NEX = 1, slice thickness =

1.5 mm/0 mm interslice. The individuals for the study were

selected by neuroradiologists at the University of Pittsburgh

Medical Center. No participant has a neurologocal disease

and all have similar educational level. Mean age of the par-

ticipants is 66 years (SD=7.5).

3. METHOD

There are four major steps in our method. First, we de-

formably register a single reference template to each brain

image. Second, we compute asymmetry-based features from

the obtained deformation fields. Third, we perform fea-

ture screening for the most relevant features out of the 11.5

million computed during the second step. Fourth, we use for-

ward selection to find the best subset of features for a linear

regression model that estimates age. Each of the four steps is

described in detail below.

Image registration: To prepare images for the fully de-

formable registration, we perform intensity normalization us-

ing a histogram equalization approach implemented in the In-
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Fig. 1. The locations of the top 200 AVR-ranked asymmetry features clustered around posterior horns of the lateral ventricles, the amygdala,

the ventral putamen with a nearby region of the anterior inferior caudate nucleus, and the basal forebrain.

sight Toolkit (ITK) [6], followed by midsagittal plane (MSP)

alignment [7]. At the last preparatory step, we use MIRIT [8]

to affinely register the reference image, Colin27 template [9],

to every image in the dataset. The preliminary steps reduce

brightness variations and global differences in overall size,

orientation, location and skewing between the images in the

dataset. Once the preprocessing is completed, we apply finite

element mesh based fully deformable registration algorithm,

followed by the asymmetric implementation of Demons fully

deformable registration algorithm to register the Colin27 tem-

plate to every image [10]. Both of these algorithms are part

of ITK. We verify quality of the registration in a quantitatve

way using mutual informaton [11].

Asymmetry feature extraction: As the result of the fully

deformable registration we obtain deformation fields that con-

tain information about differences in size, shape and locations

of the corresponding anatomical structures of the brain im-

ages. A deformation field is a vector image that maps refer-

ence image voxel coordinates to the coordinates of the cor-

responding input image voxels. We extract five types of fea-

tures from these vector fields: x, y, z components, length of

the vectors, and the determinant of the Jacobian matrix of the

deformation field. This way, for every deformation field we

obtain five 3D scalar images, one for each feature type. These

images contain information about local differences in x, y, z

coordinates and the distances between the corresponding vox-

els, as well as local contractions/expansions for every voxel

neighborhood of the reference image. In order to capture this

information with varying degree of locality, we create an im-

age pyramid with 4 image scales for every scalar image ob-

tained. First level in the image pyramid is the image itself,

and every subsequent level is a smoothed and subsampled (by

the factor of two in each dimension) version of the previous

level. At every level of the pyramid we compute an asymme-

try image which consists of the absolute value of the voxel-

wise difference between voxel values on the left of MSP and

their symmetric counterparts on the right. The asymmetry

images contain the information of how symmetric each de-

formation is with regard to five feature types at four image

scales. Finally, we compute neighborhood statistics for the

voxels in these asymmetry images. We consider a 3x3x3

voxel neighborhood around each voxel and compute mean

and standard deviation of the asymmetry image voxel values

in this neighborhood. The computed means and standard de-

viations comprise a pool of available asymmetry-based fea-

tures. Using mean values in a 3x3x3 voxel neighborhood

makes our method less susceptible to registration errors while

providing information about local asymmetry, and standard

deviation allows us to leverage the information about local

inhomogeneities of the deformation fields. The total number

of asymmetry features included in our study is 11,479,470.

Feature screening: The image processing and the feature

extraction steps transform the database of 246 images into a

dataset with 11.5 million asymmetry-based features and 246

data points. Such a large number of features endows our ap-

proach with great potential, since it allows us not to restrict

the analysis to a particular region of interest, image scale or

a feature type. However, this potential can be realized only if

we are able to efficiently select a small subset of relevant fea-

tures from which a generalizable model can be learned. The

first step in this process is feature screening, which allows us

quickly eliminate vast majority of features non-discriminative

features. We rank each feature according to its ability to dis-

criminate between the people in their fifties and people in

their seventies, as measured by the augmented variance ra-

tio (AVR) [12]. The larger the AVR, the more discriminative

the feature is. Our rationale is that if a feature does not dis-

criminate well between the subjects on opposite ends of the

age range, it will not be useful for age estimation. Participants

whose ages are between 60 and 69 years old are not used in

the feature screening process. Only 200 features with highest

AVR make it to the more rigorous forward subset selection.

Forward feature subset selection for linear regression:
We use forward selection to learn the linear regression model

for age estimation. At each step of forward selection we add

the feature that reduces regression error the most. Forward

selection insures that even though many of our features are

correlated, only the features that contain new information are
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Fig. 2. (a) Age estimation error computed using leave-15%-out

cross-validation as a function of feature subset size for original (red)

and permuted (blue) datasets selected from 50 asymmetry features

with highest AVRs ; (b) absolute age estimation error as a function

of the number of subjects left out from THE original dataset for each

split. BIC was used for model selection. The age estimation error is

robust for up to leave-60%-out cross-validation.

added at each step. We use Bayesian Information Criterion

(BIC) to determine when the forward selection process should

stop. BIC is the goodness of fit for the model penalized by

the size of the feature subset the model uses. We use leave-

15%-out cross validation with 50 dataset splits to estimate the

prediction error of regression models.

4. EXPERIMENTAL RESULTS

The regions where asymmetry is found to change the most

with age are the posterior horns of the lateral ventricles, the

amygdala, the ventral putamen (and a nearby region of the an-

terior inferior caudate nucleus), and the basal forebrain (Fig-

ure 1). The top features cluster together nicely; no noise fil-

tering was done to produce Figure 1. The cross-validation

accuracy, permutation tests and age estimation accuracy on a

separate, unseen dataset are described below.

Validation: cross-validation of the linear regression
model: The linear regression model chosen using the BIC

criterion yields a mean estimation error of 4.1 years on the

entire training dataset. Applying cross-validation approach

to evaluate predictive capabilities of our method we use 50

leave−N−out splits of the original dataset into training and

test sets. The results of the evaluation for different values of

N are presented in Figure 2(b). The estimation error remains

fairly stable around 5.4 years for N up to 40% (using 148

images for training and 98 images for testing). The standard

deviation of the mean estimation errors between the splits

first decreases with the increase of the number of images in

the test set, and then increases when the number of images

in the training set becomes too small to learn a generalizable

model.

Validation: permutation test:. In order to show that

age estimation accuracy of our model is not achieved due

to chance, but rather due to the relationship between aging

and brain asymmetry, we perform 30 permutation tests. Dur-

(a) (b)

Fig. 3. Mean signed errors (a) and mean absolute errors (b) as a

function of feature subset size selected from top 50 AVR-ranked fea-

tures. The vertical line indicates subset size selected according to the

BIC during training on the dataset of 246 normal controls.

ing each test we randomly permute ages in the dataset, thus

destroying any correlation between age and brain asymme-

try that is present in the original dataset. For each permuted

dataset we learn the regression model and use leave-15%-out

cross-validation to estimate prediction errors. The results of

leave-15%-out cross validation are presented in Figure 2(a).

The mean age estimation error of our model on the 30 per-

muted datasets was 6.6 years with standard deviation of 0.2

years. These results show that the accuracy of our model

on the original dataset is significantly (p-value<0.001) higher

than that on the permuted datasets.

Validation: age estimation on a new dataset:. We ap-

ply the regression model learned on the dataset of 246 normal

subjects to a new dataset of 17 AD, 17 MCI and 18 normal

controls aged between 50 and 79 years old. The distribu-

tion of ages is similar for all three subject classes. The re-

gression model, trained based on the top 50 features, yields

larger errors for the AD subjects than for normal controls

(Figure 3(b)). Moreover, our results reflect the relative sever-

ity of brain pathology between the three subject groups (Fig-

ure 3(a)): insignificant age overestimation for normal controls

(no pathology, mean signed error is 0.6 years), systematic

overestimation of age for MCI patients (mild pathology, mean

signed error 2.2 years), and the largest systematic age overes-

timation for AD patients (severe pathology, mean signed er-

ror is 4.7 years). These findings suggest that the brains of

AD and MCI patients appear older than that of their normal

counterparts. The paired t-test between age estimation errors

for the age-matched subjects, revealed that the differences be-

tween CTL and AD and CTl and MCI were significant (with

p-values of 0.019 and 0.044 respectively), while there was no

significant difference between MCI and AD subjects.

5. SUMMARY AND DISCUSSION

Our results show that automatically discovered, quantified

asymmetry features sensitive to aging cluster around the pos-

terior horns of the lateral and third ventricles (in agreement
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with [13]), the ventral putamen and a nearby region of the an-

terior inferior caudate nucleus (in agreement with [14, 2, 3],

the basal forebrain and superior temporal gyrus(in agreement

with [14]) (Figure 1). Basal forebrain is involved in learning

and memory function; putamen and inferior caudate nucleus

are responsible for executive function. Executive function,

memory and ability to learn are known to deteriorate with

age. Our findings in ventricular asymmetry changes are most

likely indirect evidence of gray matter atrophy in the brain

regions that surround the ventricles.

Based on the asymmetry of the selected regions we are

able to estimate the age of subjects outside of the training

set with an average absolute error of 5.4 years and average

signed error of -0.2 years. In addition, when applied to the

dataset of AD/MCI/CTL subjects, our model’s age estima-

tion errors are consistent with the severity of brain pathology

for each subject group. The mean signed error is 0.6 years

for normal controls, 2.2 years for MCI patients and 4.7 years

for AD patients. These results suggest that AD and MCI pa-

tient’s brains deteriorate with a higher rate than that of nor-

mal controls. In particular, our study indicates that changes in

striatum regions and the third ventricle are accelerated for the

Alzheimer’s disease patients. These findings are consistent

with the reports that enlarged third ventricle [15] and amyloid

and neurofibrillary changes in the striatum [16] are associated

with Alzheimer’s disease. We are hopeful that the quantified

relationship between brain asymmetry and aging will play an

important role in early Alzheimer’s disease diagnosis.
While current results are very encouraging, there is room

for improvement. In the future, we plan to incorporate more
types of features, take into account the signed voxel-wise dif-
ferences in addition to their absolute values for asymmetry-
based features, eliminate the effects of the asymmetry in the
reference image, and apply other types of parametric and non-
parametric regression for age estimation.
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