
Derivation of variance-weighted Bernoulli
equations

Here we derive the likelihood functions for
variance-weighted Bernoulli and mixture-of-
Bernoulli models, Eqns. 4 and 5 in Section 3.2
of the submitted paper,

Recall that each foreground shape mask is mod-
eled as a set x = (x1, . . . ,xD)T of D binary vari-
ables. If each of the pixels xd of x is modeled as
a Bernoulli variable with mean µd , then assum-
ing conditional independence among pixels, the
joint likelihood function is given by

p(x|µ) =
D

∏
d=1

µxd
d (1−µd)(1−xd) (1)

We now associate with each pixel xd a non-
negative weight vd computed as the variance of
that pixel across all the training patterns. We
can think of these weights as representing the
importance of each pixel, with higher weights
meaning more important, in order to make the
model spend more effort explaining the higher-
variance parts of the shape.

To see how to incorporate these weights into the
likelihood function, imagine the weights were
integers. We could then treat them as replica-
tion factors, saying how many times to duplicate
each pixel to increase its influence. Consider a
simple case where D = 2; Eqn. 1 hence repre-
sents the joint likelihood for two pixels x1 and
x2 so that

p(x|µ) = p(x1,x2|µ) = p(x1|µ1)p(x2|µ2) .

Now, if we thought that it was twice as impor-
tant to explain pixel x2 as it was to explain x1,
we could duplicate x2 to get two copies of it, as
opposed to only one copy of x1, so the joint like-
lihood would become

p(x1,x2,x2|µ) = p(x1|µ1)p(x2|µ2)p(x2|µ2)
= [p(x1|µ1)]1[p(x2|µ2)]2

We could achieve the same effect by setting
weight v1 = 1 and v2 = 2, and writing

p(x1,x2|µ,v1,v2) = [p(x1|µ1)]v1[p(x2|µ2)]v2 .

In general, allowing the weights to be nonin-
teger values (as long as they are nonnegative),
the joint likelihood function of a set of weighted
Bernoulli variables can be written as

p(x|µ) =
D

∏
d1

µxdvd
d (1−µd)(1−xd)vd (2)

which is what we proposed in Eqn. 4 in Section
3.2 of the submitted paper.

Weighted Bernoulli mixture model
For a collection X = {xi, . . . ,xN} of N training
shape patterns, taking the weighted Bernoulli
variables above as the components of a mixture
model leads to our weighted Bernoulli mixture
model. The joint likelihood of the model is thus

p(X|µ,π)=
N

∏
n=1

K

∑
k=1

πk

{ D

∏
d=1

µkd
vdxnd(1−µkd)vd(1−xnd)

}
(3)

where π = {π1, . . . ,πK} are the component mix-
ing weights.

The rest of the derivation for the log-likelihood
function (Eqn. 5 in the submitted paper) and pa-
rameter estimation proceeds in the standard way
by hypothesizing a set of latent variables rep-
resenting the component membership of each
training sample, relaxing that to be a soft assign-
ment computed as expected values, and iterat-
ing expectation and maximization steps within
an EM algorithm. A similar derivation (without
weights) can be found in Bishop.
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