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Abstract. We present a Bayesian approach for simultaneously estimat-
ing the number of people in a crowd and their spatial locations by sam-
pling from a posterior distribution over crowd configurations. Although
this framework can be naturally extended from single to multiview de-
tection, we show that the naive extension leads to an inefficient sampler
that is easily trapped in local modes. We therefore develop a set of novel
proposals that leverage multiview geometry to propose global moves that
jump more efficiently between modes of the posterior distribution. We
also develop a statistical model of crowd configurations that can han-
dle dependencies among people and while not requiring discretization of
their spatial locations. We quantitatively evaluate our algorithm on a
publicly available benchmark dataset with different crowd densities and
environmental conditions, and show that our approach outperforms other
state-of-the-art methods for detecting and counting people in crowds.
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1 Introduction

Crowd detection is challenging due to scene clutter and occlusions among indi-
viduals. Despite advances in detecting and tracking people in crowds, monocular
techniques are limited by ambiguities caused by insufficient information from a
single view. Multiview approaches, on the other hand, can resolve ambiguities
using complementary information from different views of the same scene. For
example, two people totally overlapping in one view might be well separated in
another view, making detection easier.

We present a probabilistic approach to estimate the crowd configuration, i.e.
number of individuals in the scene and their spatial locations, regardless if people
are visible in one view or multiple views. Our approach uses a stochastic process,
specifically a Gibbs point process, to model the generation of multiview images
of random crowd configurations. The optimal crowd configuration is estimated
by sampling a posterior distribution to find the MAP estimate for which this
generative model best fits the image observations. An overview of our approach
is illustrated in Figure 1.

Our approach is motivated by the success of previous generative models for
people detection [1-3]. Due to the great flexibility offered by sampling-based in-
ference methods, our crowd model can accommodate inter-person dependencies
that otherwise would be intractable to infer because of their inherent combi-
natorics. Efficient sampling strategies are the key to performance in practice.
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Fig. 1. Our proposed method tests hypothesized crowd configurations in 3D space
against multiview observations (foreground masks) within a sampling framework.

Although various data-driven proposals have been designed in the single view
context to guide hypothesis generation [2, 3], to our knowledge we are the first
to explore multiview geometry constraints for efficient sampling.

Summary of Contributions

1. We extend generative sampling-based methods from single view to multi-
view, providing a unified framework for crowd analysis that successfully es-
timates 3D configurations in monocular and multiview input.

2. We introduce novel proposals based on multiview geometric constraints,
yielding a sampler that can effectively explore a multi-modal posterior distri-
bution to estimate 3D configurations despite occlusion and depth ambiguity.

3. Our global optimization does not require discretization of location and re-
spects modeled spatial dependencies among people, resulting in better de-
tection and localization accuracy than current state-of-the-art.

2 Related Work

Among monocular approaches for pedestrian detection [4-9], classifier-based
methods are very popular [7-9] and sampling-based methods have also been
shown effective for crowd detection [2,3,10] as well as generic object detec-
tion[11, 12]. Within the sampling framework, various efficient, data-driven sam-
pling strategies have been proposed. For example, Zhao and Nevatia [2] use a
head detector to guide location estimates and Ge and Collins [3] learn sequence-
specific shape templates to provide a better fit to foreground blobs. We extend
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the sampling framework to a unified approach that can detect people visible in
a single view or in multiple views.

Previous multiview detection methods differ not only in image features and
algorithms, but also camera layout. We confine our discussion to multiple cam-
eras with overlapping viewpoints, for we are primarily interested in resolving
ambiguities due to occlusion. Mittal and Davis [13] match color regions from all
pairs of camera views to generate a ground plane occupancy map by kernel den-
sity estimation. In Khan et.al. [14], foreground likelihood maps from individual
views are fused in a weighted average fashion based on field-of-view constraints.
Tyagi et.al. [15] develop a kernel-based 3D tracker that constructs and clusters
3D point clouds to improve tracking performance.

Among related approaches that estimate ground plane occupancy [1,16-18],
our work bears the closest resemblance to [1] in that we both take a generative
approach. However, they discretize the ground plane into a grid of cells, and
approximate the true joint occupancy probability of the grid as a product of
marginal probabilities of individual cells, under the assumption that people move
independently on the ground plane. Although our problem and framework are
similar, we use a sampling-based inference technique that allows us to use a more
flexible crowd model. Our model relaxes the independence assumption among
people and does not require discretization of spatial location nor a fixed size
for each person. We show in our results that these improvements lead to better
detection and localization accuracy as well as greater robustness to errors in
foreground estimation and camera calibration.

Our efficient sampling algorithm is inspired by previous work that seeks to
improve the mixing rate of a sampler by encouraging traversal between different
modes of the target distribution [19-21]. Dellaert et.al. [19] developed a chain
flipping algorithm to generate samples of feasible solutions for weighted bipartite
matching. Other methods such as the mode-hopping sampler [21] use knowledge
about the topography of the target distribution to speed up sampling. Although
inspiring, these methods are not directly applicable to our scenario because we
are searching a large configuration space with variable dimension. More relevant
is the data-driven MCMC framework [22] that uses various data-driven proposals
such as edge detection and clustering to speed up Markov chain sampling for
image segmentation.

3 A Gibbs Point Process for Crowd Detection

In this section we present a Bayesian statistical crowd model that accommodates
inter-person dependence, together with a baseline sampling algorithm that di-
rectly extends a single view detection approach to perform multiview inference.
We discuss the limitations of this baseline algorithm in Section 4 where we
present the motivation and strategies of our novel multiview proposals. Experi-
mental results on a public benchmark dataset are presented in Section 5.
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3.1 Modeling

Our goal is to estimate a 3D crowd configuration based on image observations
from a surrounding set of fixed cameras. A crowd configuration is an unordered
set of targets o™ = {o01,...,0,n}, ¢ = 1,...,n, n > 0. Each target represents
a person moving on a flat ground plane and is parameterized by an upright
cylinder o = (¢, r, h), where ¢ € W is a spatial coordinate in the centroid-plane,
a plane that is half the height of an average person above the ground, W is a
compact subset of R? equipped with volume measure v, and [r, h] specifies the
width (radius) and height of a person.

The configuration space is denoted as 2y = {0, UY 0%}, which is a union
of subspaces with varying dimensions, including the empty set and up to IV
people distributed over W. We model random configurations by a spatial point
process, specifically, the Gibbs point process [23]. Let u(-) be the distribution
of a homogenous Poisson process of unit intensity, which is analogous to the
Lebesgue measure on R?. The density of the Gibbs point process can be defined
with respect to this reference Poisson process. Formally,

o
Pl0) = T oYdo)’

where the mapping f(o) : 2 — [0,00) is an unnormalized density having the
Gibbs form f(o) = exp{—U(0)}.

The Gibbs process is very flexible for modeling prior knowledge about ob-
ject configurations. It often includes a unary data term to model object at-
tributes and higher-order interaction terms to model inter-object relationships.
Our model incorporates two types of inter-person dependency. The first one is
an avoidance strategy motivated by studies in social science showing that people
keep a ‘comfort zone’ around themselves. We incorporate this dependency by a
Strauss Model [23], which defines a pairwise potential interaction as

(1)

#(05,0;) = {g lei—cilISr ’ @)

[ ei—cil>r
where 7 is a parameter that controls the size of the comfort zone and 7 is set to
some large constant number.

The second modeled dependency is based on the principle of non-accidental
alignment. It penalizes configurations where people line up perfectly along a
viewing ray to claim the same foreground region. This is not a hard constraint:
certainly one person can be occluded by another in any view. However, each
person is unlikely to be occluded in every view. In general, we seek to penalize
configurations that require a large number of occlusions to explain the data.
Unfortunately, explicit occlusion analysis involves a combinatorial number of
interacting subsets. To keep the energy function linear in the number of targets,
we measure the degree of alignment in 3D by the amount of overlap among
projected rectangles in each image view. Formally, a ‘label’ image is computed
by pixel-wise disjunction as S¥(o) = U;H"(0;), where H" is projection function
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associated with camera v that maps a 3D person to a binary image that is zero
everywhere except for a rectangular area bounding the projected person and v €
[1,V] where V is the number of camera views. Pixels in the label image covered
by at least one projected rectangle are labeled as foreground. For simplicity, we
use S as a shorthand for S¥(o). For each object o;, DY = |H"(0;) N S¥(0\0;)]
measures the amount of overlap between one target’s projection and the rest
of the targets in that view by counting the number of foreground pixels in the
intersection image. We define the overlap cost for o; as

Dy o; only visible in v
Di =14 min DY otherwise :
v

This way, overlap in some views will not be penalized as long as the target is
clearly visible in other views. We encode prior knowledge about a general crowd
configuration in the total energy of a Gibbs process

U(O):Zﬂj)(OuOg‘)‘f’ZDrFVN (3)

where N = |o| is the number of estimated people in 3D. The last term penalizes
spurious detections with a constant weight ~.

Under this probabilistic framework, the problem of crowd detection is solved
by finding the configuration that best explains the image observations (fore-
ground masks) from different views. Denote the binary foreground mask in view
vby Z¥ ={Z!}, Z? € {0,1}, i =1,...,m,, where m, is the number of pixels in
the image observed from view v. A likelihood function £ is defined to measure
the probability of a configuration given the foreground masks by comparing two
sets of binary images, the mask images Z and label images S,

L(0;Z) = L(S;Z) = exp{—G(0)}, (4)
G(o) = >0y Yo (8P, 20) + B, a(0)), (5)
1 SY+#27° 1 o, s.t. HLIOZT g 4

This likelihood function contains two terms: I; penalizes discrepancies between
hypothesized person detections and the image observations, and I imposes an
extra penalty on ‘ghosts’ — detections that cover mostly background pixels. 3 is
set to some large constant number.

Combining the prior (Eqn. 1) and the likelihood function (Eqn. 4), we define
the optimal crowd configuration as the MAP estimator

e—(U(o)-i—G(o))
o* = argmax(P(0]Z)) = argmax(—————). 7
(Pl = e v
Optimizing the above posterior directly is intractable because the normalizing
constant from the Gibbs prior, C(£2) = [, f(0)du(o), involves all possible con-
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figurations in the combinatorial configuration space {2. Moreover, pairwise po-
tentials in our crowd model make the inference harder than what can be handled
by approximation methods such as [1, 18, 24].

3.2 Inference

We use reversible jump Markov Chain Monte Carlo (RIMCMC) to battle the
intractable normalizing constant in Eq. 7. MCMC is designed to generate sam-
ples from complicated target distributions, such as our posterior distribution,
by constructing a Markov chain with the desired target distribution as its equi-
librium distribution. RIMCMC [25] extends the classic algorithm to deal with
variable dimension models. It suits the crowd analysis problem well because the
number of people is not known apriori, and thus also needs to be estimated.

The RJIMCMC sampler explores the configuration space by proposing pertur-
bations to a current configuration. The general sampling framework is reviewed
in the supplemental material !. The design of good proposal distributions is
the most challenging part of the sampling algorithm. Proposals that only al-
low local perturbations may become trapped in local modes, leaving large por-
tions of the solution space unexplored, whereas global adjustments have less
chance to be accepted unless the target distribution is very smooth or tem-
pered to be so. To achieve a good balance of both local and global proposals,
we use proposals from a mixture of both types: Q(;) = ch:1 peQ.(;), where
>ope = 1, [Qc(050)u(do’) = 1, and C is the number of different proposal
moves. Below we describe a baseline multiview sampler directly extended from
local birth, death, and update proposals commonly used in single view sam-
plers [2, 3].

Birth/Death proposal. A birth proposal adds a 3D person to the current
configuration, i.e. 0/ = o U 0p. A simple birth strategy might place a person
uniformly at random (u.a.r.) in the bounded region W. A death proposal removes
a person from the current configuration so that o’ = 0\ 04, e.g. choosing o4 u.a.r.
from o. Both proposals involve a dimension change from |o| to |o’|. Instead of
blindly adding a person, we use a more informative data-driven proposal [22].

We sample o0p’s location according to the birth probability P, ~ P’ji(l),
’ Liew (D)
where P,(l) = + 3, % is the fused occupancy likelihood of a particular

location [, computed as the sum of the percentage of foreground pixels within its
projected rectangles in all views, and W is a discretization of the bounded region
of interest in the centroid-plane W. Our final detection results are not restricted
by this discretization because localization is adjusted by other proposals of the
sampler.

Update Proposal. The update proposal preserves the dimension of the
current configuration but perturbs its member’s attributes (location and size)
to generate a new configuration. We use a random walk proposal that selects a
person o,, u.a.r. from o, and either proposes a new spatial placement by sampling

! http://vision.cse.psu.edu/projects/multiviewmeme/multiviewmeme.html
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Fig. 2. Common pitfalls in multiview crowd detection. Left: the phantom phenomenon.
A 3D phantom location (red circle) explains foreground pixels in different views that
actually belong to the projections of two different real people (red boxes). Right:
depth ambiguity for people visible in a single view can result in explanation of a single
foreground region by alternative detections of different sizes.

from a truncated normal distribution N (¢|c,, o) centered at the current location
Cy, OF proposes a new size by sampling from a truncated normal centered at the
size of an average person, h = 1.7m and r = 0.4m.

4 Multiview Proposals

The local proposals presented in the previous section yield satisfactory results
when people are well-separated in multiple views. However, when a person is visi-
ble only in one view, the inherent depth ambiguity coupled with noisy foreground
blobs leads to a significant performance drop, which has also been reported in
previous work [18,24]. Moreover, as occlusion becomes more frequent, we have
observed that the naive sampler often gets stuck in local modes because of the
‘phantom’ phenomenon. Phantoms are accidental intersections of viewing rays at
locations that are not occupied by any real person. Phantom hypotheses attempt
to explain foreground regions across multiple views that actually are projections
of different people in 3D. As shown in Figure 2, when a phantom gets accepted
in the current configuration, later proposals for the real person are less likely
to get accepted because the phantom already explains a large portion of their
foreground pixels, thus the new birth proposal will suffer a high overlap penalty.
Local random walk updates are also unlikely to escape from this local maximum.
Although increasing the step size of a random walk can alleviate the problem to
some extent, such blind exploration wastes time visiting mostly low probability
regions, leading to an inefficient sampler.

Inspired by long range mode-hopping MCMC proposals [19-21], we exploit
geometric constraints to design proposals that allow global changes that more ef-
fectively explore the configuration space. The motivation behind using geometric
constraints is that multiview geometry is consistent across views whereas image-
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Fig. 3. Left: Likelirays from one viewpoint v, indexed by angle 6, define a set of 1D
distributions over potential person and phantom locations at different depths along
viewing rays in the centroid-plane. Right: Mode-hopping by sampling from a likeliray
pv(0). Green dots are samples from the depth move, which visits all significant modes
whereas the blue samples from a local random walk proposal stays in a single mode.

based appearance constraints (e.g. head detection for birth [2]) may conflict with
each other in different views.

Our multiview proposals are based on occupancy likelihood rays, or likelirays
for short. Recall that in our data-driven birth proposal, we have computed a
centroid-plane occupancy map by fusing foreground masks from all the views in
3D. Likelirays are essentially polar coordinate transformations of the centroid-
plane occupancy map with respect to each camera view v, indexed by angle 6,
i.e. p,(0). Different modes along each likeliray correspond to potential real and
phantom locations of people at different depths. The likeliray representation
gives us a convenient way to generate proposals with respect to a single camera
view while taking into account fused information from all other camera views.
We now present two such multiview proposals.

Depth Move Proposal. A depth move first randomly selects a person o,
and a camera view v from the list of views where o,, is visible. Let 6§ denote
the angle of the polar coordinate of o0,,. A new 3D location is sampled with
probability proportional to the 1D likeliray distribution p,(6). Figure 3 shows
that samples from depth moves are able to visit different modes whereas samples
from local random walk proposals only cluster around the current location. The
depth proposal is a powerful and versatile mechanisim to handle the problems
shown in Figure 2. It can switch between a phantom and a real person hypoth-
esis and also can produce the effect of a large scale change of a single person
by “sliding” them in depth along a viewing ray, which is useful for correctly
detecting people visible only in a single view. Unlike random walk with large
step size, a depth move preserves some of the already covered foreground pixels.
Depth moves therefore tend not to cause large decreases in likelihood, so are
more likely to be accepted.

Merge/Split Proposal. When people are only visible in a single view and

the viewpoint is not very elevated, a large foreground region may become cov-
ered by fragmented detections corresponding to pedestrian hypotheses scattered
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Fig. 4. Left: Merge Proposal. The top panel shows how the 3D merge proposal yields a
new hypothesis C' that minimally covers both projections A and B in view v. The bot-
tom shows that the final results (right) correctly recover from fragmented hypotheses
(left). Right: Independent Update Proposal. The top panel shows localization error
(marked in red) in four views due to camera calibration and synchronization errors.
The bottom shows improved results using the independent update proposal.

within a small range of viewing angles at different distances from the camera may
be hypothesized to cover parts of a large foreground region (Figure 4). These
fragments create local modes that prevent explaining the entire region correctly
as one single person.

We design a 3D merge/split move to ease the switch between the following two
hypotheses: multiple distant people versus a single, closer person. Let two people
0, and o, both be visible from a particular viewpoint, with polar coordinates
(0a;7q) and (O, 7p), 0 € (0,7). As illustrated in Figure 4, their angular extents
are [a1,as] and [b1,bs]. A new merged person o. can be hypothesized from o,
and oy in two ways: 1) when one of the angular extents completely falls within
the other, we randomly move the person with the larger angular extent closer
to the camera and delete the other; 2) otherwise, without loss of generality,
assume a1 < by and as < by, which includes the case of partial occlusion as
well as complete separation of the two. We create a new person in 3D whose
image projection minimally covers the projections of both merge candidates, thus
having an angular extent [a1,bs]. The corresponding polar coordinates (0., r.)
of o, can be computed as 6. = “1;"2, re = tan(O.%(sbz]—al))’ where w is the width
of an average sized person.

A 3D merge move randomly chooses a view v in which to propose a merge.
Denoting all visible people in v as o,, a person o, is chosen u.a.r. from o,.
For each other person o;, i # a, let e; be the angular extent of the candidate
blob that would result from merging o, and o;. We use these extents to define a
probability distribution over candidates i as p; = ﬁ, where &; = %:e] favors
merging two people with large angular overlap. A candidate person is proposed
for merging with o, by sampling from this distribution. If a newly merged person
is accepted, we store their components in a merge list. The reverse proposal is
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a 3D split that randomly selects a person from the merge list and splits them
back into their stored original component detections.

Independent Update Proposal. So far, the four types of presented pro-
posals, birth/death, update, depth move, and merge/split, all hypothesize new
person locations/sizes in 3D and the corresponding projections in image views
are determined by the camera calibration information. To accommodate noisy in-
put, e.g. errors in calibration, synchronization, or foreground estimation, we add
an independent update proposal that can perturb the 2D projection rectangle in
each image plane independently (demonstrated in Figure 4). The independent
update move works by randomly choosing a person o; and a camera view v from
the list of views where o; is visible. With equal probability, either the size or the
location of the projection box in view v is updated by sampling from a trun-
cated 2D normal distribution centered at the nominal image location and size
determined by the calibration matrices.

5 Experiments

We evaluate our algorithm on the PETS2009 dataset [26], a challenging bench-
mark dataset for multiview crowd image analysis containing outdoor sequences
with varying crowd densities and activities. We tested on two tasks: crowd de-
tection in a sparse crowd (sequence S2L.1-1234) and crowd counting in a dense
crowd (sequence S1L1-1357). We generated foreground masks using an adap-
tive background subtraction algorithm similar to Zivkovic’s method [27], and
camera calibration information provided with each dataset was used to generate
the birth proposal map P, as the average back-projection of foreground masks
from all views, as described in Section 3.2. Sample detection results are shown in
Figure 6. Our proposed method obtains superior results over other state-of-the-
art crowd detection methods, as will be shown through quantitative evaluation
below.

Sparse sequence S2L1: We used four camera views, including one ele-
vated, far field view (called View 1) and three low-elevation near field views
with frequent, severe occlusions (Views 5, 6, and 8). We compared our detection
results against the ASEF method, which is a detection method using convolu-
tion of learned average of synthetic exact filters [5], and the POM+LP method,
which is a multi-target detection and tracking algorithm based on a probabilistic
occupancy map and linear programming [24]. We chose these two methods be-
cause they are the current top-performers as reported in Winter-PETS2009 [26].
We also compared against the Cascade [8] and Part-based [9] person detectors,
trained according to [5]. We performed ground-truth annotation of the sequence
and evaluated each algorithm based on the standard MODA and MODP metrics
(details are included in the supplemental material’). MODP measures localiza-
tion quality of the correct detections and MODA measures detection accuracy
taking into account false negatives/positives. For both metrics, larger values are
better. A detection is counted as correct if the overlap ratio between the anno-
tated box and the detection box is greater than some threshold 7. We systemat-
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Fig. 5. Evaluation results on S2L1 and S1L1. For S2L1, our algorithm (red curves)
consistently outperforms other methods in terms of MODA&MODP (A) and Preci-
sion&Recall metrics (B) at different overlap threshold levels without using temporal
or appearance information. For S1L1 (C), we achieve lower count errors in all three
target regions than current state-of-the-art methods.

ically vary this threshold and compute the evaluation metrics at each threshold.
Correct detections and false positives/negatives are determined by solving an
assignment problem between the annotations and the detection output.

Figure 5(A) shows averaged MODP and MODA scores across four views for
our method and POM+LP, and over the detections from View 1 for the three
classifier-based detectors (those are monocular methods that only have results
reported for View 1). Our multiview MCMC method consistently outperforms
others (higher detection accuracy) at all overlap threshold levels. Additionally,
the prominent performance gap at the tighter end of the threshold levels (larger
7) indicates that our method has better localization quality than other methods.
It is interesting to note that our method is the top performer even though we do
not use temporal consistency constraints across frames or discriminative object
appearance information. Our improved accuracy is due to use of a more flexible
generative model, made possible by the sampling-based inference, and our novel
multiview proposals that allow more efficient global exploration of the posterior
distribution. Since we are free from restrictions of discrete ground-plane grids,
fixed 3D person size, and independence among people, we achieve better 3D
localization than POM+LP, even with noisy input (Figure 6).

As the overlap threshold decreases, we see (as expected) an increase in MODA
and decrease in MODP, since more misaligned detections become classified as
correct. However, our MODP curve has a slower decreasing rate than others,
which again confirms that we achieve better localization accuracy. Figure 5(B)
shows results from a similar comparison but using precision/recall metrics. Our
method has higher recall and precision than other methods.

In Table 5, we compare our multiview MCMC method to the naive baseline
MCMC approach, introduced in Section 3.2, which does not use the new multi-
view proposals. The new multiview method outperforms the baseline approach
in all cases. In the same table, we also show that our method works well with
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Table 1. MODP (1st column) and MODA (2nd column) in each view of S2L1 at
an overlap threshold 7 of 0.5. Scores in bold indicate the top-ranked algorithm with
respect to score metric and view. The first three rows are variants of our sampling-based
approach and the bottom four are other state-of-the-art methods.

Method View 1 View 5 View 6 View 8
Multiview | 0.6805 |0.7532(0.6872(0.6998|0.6953(0.8162|0.7004|0.6941
Baseline |0.6791 | 0.6988 | 0.6872 | 0.5660 | 0.6936 | 0.6967 | 0.6967 | 0.5702
Singleview|0.6863| 0.7052 | 0.6751 | 0.6415 | 0.6855 | 0.5333 | 0.6924 | 0.5357
POM+LP| 0.5806 [-0.1037| 0.6071 | 0.2630 | 0.6467 | 0.3354 | 0.6344 | 0.2188
ASEF 0.62120.4116 -
Cascade | 0.6150 | 0.3000 -
Parts |0.5927(0.1759 -

monocular sequences. For this experiment, we only use input observations from a
single view. As opposed to the significant performance drop of the POM method
reported in [24] in this situation, our single view detection results do not vary
dramatically from the multiview results, and continue to outperform the other
methods. These experiments indicate that our multiview proposals are effective
at dealing with depth ambiguity, even along viewing rays from a single camera.

Dense sequence S1L1: The S1L1 sequence is captured from more elevated
camera viewpoints, but with a higher crowd density and more lighting changes
due to intermittent cloud cover. We annotated ground-truth person counts in all
three regions specified by the PETS evaluation for View 1, shown in Figure 6,
and detect people using two camera views. The average count error for each
region over the whole sequence is reported in Figure 5(C). Our error rate is less
than 2 people per frame, better than the already remarkable results from Chan
using holistic properties [28], which are the best results reported so far. We also
compared against a 2D MCMC implementation [10] that performs birth, death
and update proposals within the 2D image plane of View 1.

In Figure 6 we show sensitivity of this approach to errors in foreground es-
timation. This is an indoor sequence of 4 people walking [1]. On the left we see
that our approach is tolerant of typical levels of foreground noise. However, as
shown on the right, large areas of the image incorrectly labeled as foreground
(due, for example, to failures of background subtraction to handle rapid light-
ing changes), can lead to false positive detections. However, our framework can
be easily adapted to input data other than foreground masks, such as motion
information or pedestrian classifier score maps.

6 Conclusion

We extend monocular, sampling-based crowd detection methods to perform mul-
tiview detection to accurately localize people in 3D given single or multiview im-
ages. Our results on a challenging benchmark dataset for crowd analysis demon-
strate the advantage of our approach compared to other state-of-the-art methods.
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Fig. 6. Sample detection results for S1L1 (top) and S2L1 (middle), overlaid on the
original images and foreground masks. The bottom row shows sensitivity of our method
to varying levels of noise in the foreground mask.

We have designed novel proposals that leverage multiview geometric constraints
to effectively explore a combinatorial configuration space with varying dimen-
sion (numbers of people) while solving the problem of phantoms in multiview
sequences and depth ambiguity in monocular sequences. Our sampling-based
inference framework yields great flexibility in defining generative models that
enable accurate localization of individuals in crowds despite occlusions, noisy
foreground masks, and errors in camera calibration and synchronization.
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