1 Review of RJMCMC

Starting with an initial state, RJMCMC proposes a new state \mathbf{o}' from a proposal distribution $Q(\mathbf{o}'; \mathbf{o})$ that depends on the current state \mathbf{o} . The proposed state is probabilistically accepted as the next state in the Markov Chain according to the acceptance ratio

$$\alpha(\mathbf{o}, \mathbf{o}') = \min(1, \frac{\pi(\mathbf{o}')}{\pi(\mathbf{o})} \frac{Q(\mathbf{o} ; \mathbf{o}')}{Q(\mathbf{o}'; \mathbf{o})} \times J_{F_{|\mathbf{o}| \to |\mathbf{o}'|}}), \tag{1}$$

where the target distribution π is the posterior distribution $P(\mathbf{o}|\mathbf{Z})$ (Eqn. 8) and J is the Jacobian determinant of a dimension matching function F[1], which for all of our move proposals simplifies to a constant value of one. Notice that we no longer need to worry about the intractable normalizing constant as it cancels out in the acceptance ratio. The algorithm is outlined in the table below.

Algorithm 1. RJMCMC

Input: **Z**, *W*, ITERMAX Output: **o**^{*} Initialization: **o** \leftarrow **o**₀ for *t* = 1 to ITERMAX choose a move *c* according to the distribution $p_c(\mathbf{o}^{t-1})$ propose **o'** from the move-specific proposal $Q_c(\mathbf{o}^{t-1}; \cdot)$ sample *u* ~ Uniform(0, 1) if $\log(u) < \log(\alpha(\mathbf{o}^{t-1}, \mathbf{o}'))$ $\mathbf{o}^t \leftarrow \mathbf{o}'$ else $\mathbf{o}^t \leftarrow \mathbf{o}^{t-1}$ if $P(\mathbf{o}^t | \mathbf{Z}) > P(\mathbf{o}^* | \mathbf{Z})$ $\mathbf{o}^* \leftarrow \mathbf{o}^t$

2 Additional Results for S2L1

• Ground-truth Annotation

We compute the ground truth annotations by hand from four camera views, beginning by manually clicking on the head of each person in each view. For the people visible in more than one view, 3D head location is computed by triangulation of head viewing rays. For people visible in only one view, 3D head location is computed by intersecting the head viewing ray with a horizontal plane of average person height. For each computed (X,Y,Z) head location, we form a vertical 3D cylinder spanning from head position (X,Y,Z) to foot position (X,Y,0). The projection of this 3D cylinder into each 2D view gives us an initial set of 2D annotated bounding boxes. Small manual adjustments to the position of these 2D rectangular boxes are made as needed to better align the boxes to the people in each view.

• Performance Metrics

We evaluated each algorithm based on the MODA (Multiple Object Detection Accuracy) and MODP (Multiple Object Detection Precision) metrics from the CLEAR evaluation framework [2]. For a frame t, let G_i^t denote the annotated box and D_i^t the detection box. A detection is counted as correct if the overlap ratio,

$$OL_i^t = \frac{|G_i^t \cap D_i^t|}{|G_i^t \cup D_i^t|},$$

is greater than some threshold τ . Letting N_G^t be the total number of annotated objects, N_m^t the number of correct detections, m_t the number of false negatives, and f_t the number of false positives, MODP measures the localization quality of the correct detections,

$$\mathrm{MODP}_t = \frac{\sum_{i=1}^{N_m^t} \mathrm{OL}_i^t}{N_m^t},$$

while MODA is a detection accuracy measure taking into account both false negatives and false positives,

$$MODA_t = 1 - \frac{m_t + f_t}{N_G^t}.$$

For both metrics, larger values are better.

Figure 1: Evaluation results on S2L1 (MODP&MODA).

Overlap	Method	View 1		View 5		View 6		View 8		
0.7	Multiview	0.7754	-0.2306	0.7702	-0.2971	0.7788	-0.0626	0.7837	-0.1477	
	Baseline	0.7712	-0.2676	0.7693	-0.3574	0.7810	-0.1894	0.7834	-0.2146	
	Singleview	0.7758	-0.2019	0.7832	-0.3896	0.7684	-0.3028	0.7875	-0.2667	
	POM+LP	0.7441	-0.9269	0.7735	-0.8668	0.7604	-0.6620	0.7654	-0.6224	
	ASEF	0.7431	-0.8993	-						
	Cascade	0.7336	-0.6878							
	Parts	0.7262	-0.9476							
0.6	Multiview	0.7169	0.3811	0.7123	0.4298	0.7288	0.4998	0.7297	0.4447	
	Baseline	0.7101	0.3699	0.7178	0.2314	0.7270	0.3940	0.7276	0.3038	
	Singleview	0.7135	0.4198	0.7092	0.2948	0.7162	0.2525	0.7266	0.2537	
	POM+LP	0.6639	-0.7283	0.6652	-0.3487	0.7072	-0.1776	0.7095	-0.3165	
	ASEF	0.6666	-0.1898	-						
	Cascade	0.6596	-0.1951	-						
	Parts	0.6449	-0.4859	_						
0.5	Multiview	0.6805	0.7532	0.6872	0.6998	0.6953	0.8162	0.7004	0.6941	
	Baseline	0.6791	0.6988	0.6872	0.5660	0.6936	0.6967	0.6967	0.5702	
	Singleview	0.6863	0.7052	0.6751	0.6415	0.6855	0.5333	0.6924	0.5357	
	POM+LP	0.5806	-0.1037	0.6071	0.2630	0.6467	0.3354	0.6344	0.2188	
	ASEF	0.6212	0.4116	-						
	Cascade	0.6150	0.3000	-						
	Parts	0.5927	0.1759	-						
0.4	Multiview	0.6673	0.8467	0.6664	0.8602	0.6877	0.8707	0.6925	0.7559	
	Baseline	0.6659	0.7915	0.6597	0.7351	0.6802	0.7943	0.6799	0.6915	
	Singleview	0.6688	0.8217	0.6528	0.8073	0.6654	0.6922	0.6764	0.6429	
	POM+LP	0.5360	0.3756	0.5819	0.5798	0.6082	0.6514	0.5950	0.5028	
	ASEF	0.6071	0.5343	-						
	Cascade	0.5952	0.4726	_						
	Parts	0.5672	0.4618	-						
0.3	Multiview	0.6603	0.8830	0.6628	0.8784	0.6826	0.9027	0.6797	0.8181	
	Baseline	0.6597	0.8253	0.6497	0.8077	0.6702	0.8439	0.6679	0.7530	
	Singleview	0.6645	0.8441	0.6455	0.8471	0.6517	0.7739	0.6654	0.7026	
	POM+LP	0.5047	0.6460	0.5634	0.7223	0.5943	0.7535	0.5721	0.6621	
	ASEF	0.6003	0.5772	-						
	Cascade	0.5903	0.5022	-						
	Parts	0.5539	0.5469	-						

Table 1: Evaluation results on S2L1 (MODP&MODA).

Figure 2: Evaluation results on S2L1 (Recall&Precision).

Overlap	Method	View 1		View 5		View 6		View 8		
0.7	Multiview	0.3369	0.3697	0.3603	0.3563	0.4432	0.4588	0.3976	0.4192	
	Baseline	0.2998	0.3423	0.3172	0.3304	0.3681	0.3935	0.3702	0.3807	
	Singleview	0.3342	0.3845	0.2660	0.2944	0.3446	0.3583	0.3468	0.3584	
	POM+LP	0.0201	0.0203	0.0638	0.0621	0.1869	0.1875	0.1585	0.1685	
	ASEF	0.0865	0.0853	-						
	Cascade	0.0509	0.0726	-						
	Parts	0.0311	0.0323	-						
0.6	Multiview	0.6428	0.6987	0.7238	0.7192	0.7244	0.7560	0.6938	0.7332	
	Baseline	0.6185	0.7074	0.6116	0.6294	0.6598	0.7045	0.6294	0.6603	
	Singleview	0.6450	0.7308	0.6082	0.6556	0.6223	0.6594	0.6071	0.6390	
	POM+LP	0.1194	0.1228	0.3228	0.3235	0.4292	0.4202	0.3114	0.3423	
	ASEF	0.4412	0.4213	-						
	Cascade	0.2973	0.3974	-						
	Parts	0.2620	0.2644			-	-			
0.5	Multiview	0.8288	0.9022	0.8588	0.8481	0.8826	0.9223	0.8185	0.8677	
	Baseline	0.7830	0.8903	0.7789	0.7941	0.8111	0.8683	0.7626	0.8004	
	Singleview	0.7878	0.8934	0.7815	0.8414	0.7627	0.8115	0.7480	0.7893	
	POM+LP	0.4317	0.4429	0.6287	0.6288	0.6857	0.6860	0.5791	0.6185	
	ASEF	0.7419	0.7085	-						
	Cascade	0.5449	0.7061	-						
	Parts	0.5929	0.5977	-						
0.4	Multiview	0.8756	0.9566	0.9390	0.9250	0.9098	0.9506	0.8494	0.8991	
	Baseline	0.8293	0.9455	0.8635	0.8757	0.8599	0.9235	0.8232	0.8641	
	Singleview	0.8460	0.9607	0.8644	0.9313	0.8421	0.8803	0.8016	0.8443	
	POM+LP	0.6713	0.6888	0.7871	0.7898	0.8436	0.8370	0.7211	0.7737	
	ASEF	0.8033	0.7764	-						
	Cascade	0.6311	0.8102	-						
	Parts	0.7358	0.7448			-	-			
0.3	Multiview	0.8937	0.9764	0.9481	0.9343	0.9259	0.9667	0.8805	0.9326	
	Baseline	0.8462	0.9659	0.8998	0.9109	0.8847	0.9521	0.8540	0.9009	
	Singleview	0.8572	0.9740	0.8843	0.9539	0.8829	0.9164	0.8315	0.8742	
	POM+LP	0.8065	0.8242	0.8583	0.8618	0.8947	0.8894	0.8007	0.8594	
	ASEF	0.8247	0.7941	-						
	Cascade	0.6459	0.8269	-						
	Parts	0.7784	0.7941							

Table 2: Evaluation results on S1L1 (Recall&Precision).

References

- Green, P.: Reversible jump Markov chain Monte-Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711–732
- [2] Kasturi, R., Goldgof, D., Soundararajan, P., Manohar, V., Garofolo, J., Boonstra, M., Korzhova, V., , Zhang, J.: Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol. IEEE Transactions on Pattern Analysis and Machine Intelligence **31** (2009) 319–336