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Local Regularity-driven City-scale Facade Detection from Aerial Images

The problem

Unsupervised detection

200+ facades per image
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Motivation

Aerial 
View 
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View 

2D Image 3D Point Cloud 

Huge amount of multi-modal, multi-dimensional data

Existing work only extracts a handful of facades from street-views
Single-view facade detection helps matching / SfM
Broad applications (geo-coding, SLAM, scene understanding)
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Facade region has higher regularity

Edge images are sufficient to capture such regularities
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Overview – Edge based Regularity Analysis

Determine the vertical and horizontal facade orientation

Vertical orientation known from vanishing point

Horizontal orientation to be detected
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Overview – Edge-based Regularity Analysis

Dense local regularity computation (facade likelihood)

Dense dominant local horizontal orientation estimation

Group local regions with high regularity and consistent orientation
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Local Regularity and Facade Likelihood Computation

Vertical Edge alignment regularity

Vertical Edge distance regularity
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Vertical Edge Alignment Regularity

Facade regions→ Sparse distribution

Non-facade regions
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Distribution Sparsity (Inequality, Dispersion, Variability)

Desirable attributes of sparsity measurement 1

Robin Hood – stealing from rich giving to poor DECREASES sparsity

Rising Tide – adding a constant to all DECREASES sparsity
Scaling and Cloning invariant

Measure Robin Hood Rising Tide Scaling Cloning

|c|0
√

|c|2/|c|1
√ √

Gini
√ √ √ √

Gini = 1− 2
∑N

k=1
c(k)
|c|1 (

N−k+0.5
N ), where c(1) ≤ c(2) ≤ . . . ≤ c(N)

Gini = 0.09 Gini = 0.25 Gini = 0.53 Gini = 0.78

1Hurley and Rickard, “Compare Measures of Sparsity”, 2008
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Vertical Edge-distance Regularity

Extract vertical distances between edges

High responses to parallel elements
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Facade Likelihood

Naive Bayes assumption
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Discover the Horizontal Direction
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Facade Detection via Regional Expansion

F∗ .= (XMin,XMax,YMin,YMax, θ̇h, θ̇v) = arg maxF
∑I

i=1
∑J

j=1 s(xij, yij) · aij

∑
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s(xij, yij)aij > τr ·max
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s(xkj, ykj)akj},∀i = 1, . . . I
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i
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s(xik, yik)aik},∀j = 1, . . . J
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Facade Detection via Regional Expansion (Demo Video)

Multiple random initialization followed by iterative expansion to
maximize local regularity

IQP to remove overlapping: arg maxx x′Mx, x ∈ {0, 1}n
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Experiments

Images from NYC, Rome and SF
3000+ facades

NYC (GT) Rome (GT) SF (GT)

NYC (result) Rome (result) SF (result)
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Results and Comparisons

Comparison against [Park, et al., ACCV10]
Area based evaluation
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Application: Cross-view Matching

Matching facades with similar orientation

Resolve relative depth ambiguity

Frontal-view image patch matching with no rotation/scaling
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Summary

We have proposed and validated a novel and robust local regularity
measure using Gini score on urban scenes

Our algorithm detects and localizes facades in city-scale aerial images

The output of our algorithm leads to feasible facade matching and
alignment across views
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Backup: Dense Histogram Computation

Efficient integral histogram [F. Porikli, CVPR05] for dense feature
computation

pre-compute Cθ(i, j) for all θ

hθ(i, j) = Cθ(i, j + k)− Cθ(i, j)
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