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Abstract

Symmetry is one of the most important cues for human and machine
perception of the chaotic real world. For over three decades now, automatic
symmetry detection from images/patterns has been a standing topic in com-
puter vision. We observe a surge of new symmetry detection algorithms that
go beyond simple bilateral symmetry detection. This paper presents a sys-
tematic, quantitative evaluation of rotation, reflection and translation sym-
metry detection algorithms published within the past 1.5 years. We provide
a set of carefully chosen synthetic and real images that contain both single
and multiple symmetries and a diverse range of computational challenges.
We also provide their associated, hand-labeled ground truth. We propose a
well-defined quantitative evaluation scheme for an effective validation and
comparison of different symmetry detection algorithms. Our results indicate
that even after several decades of effort, symmetry detection from real-world
images remains a challenging, unsolved problem in computer vision.

1 Motivation

Symmetry is an essential concept in perception and a ubiquitous phenomenon
presenting itself in all forms and scales in our world (Figure 1), from galaxies
to atomic structures [7]. Symmetry is considered a pre-attentive feature [3] that
enhances object recognition. Much of our understanding of the world is based
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Figure 1: Examples of images with rotation (left column), reflection and rotation
(middle column), and translation plus rotation/reflection symmetries (right col-
umn). Their symmetry groups are cyclic, dihedral and 2D crystallographic groups
respectively. Top-row displays synthetic images while the bottom-row contains
real-world photos.

on the perception and recognition of repeated patterns that are generalized by the
mathematical concept of symmetries and symmetry groups.

The development of symmetry detection algorithms has a long history in com-
puter vision. The earliest attempt at detection of bilateral reflection symmetry
even predates computer vision itself [1]. Even though symmetries take several
basic forms (rotation, translation, reflection and glide-reflection), the detection of
bilateral reflection symmetry (mirror-symmetry) and its skewed version from im-
ages has been dominant in computer vision for several decades [5, 22, 11, 2, 24,
8,9, 26, 21, 33, 31]. In spite of years of effort, we are still short of a robust,
widely applicable “symmetry detector” that can parallel other types of computer



vision/image processing tools, such as an “edge detector.” Furthermore, we have
yet to see a systematic, quantitative evaluation and a publically available test-
image database to gauge the progress in this important, widely applicable, albeit
seemingly illusive research direction.

Within the past 1.5 years, we observe a surge of new symmetry detection pa-
pers in several related fields [19, 25, 10, 29, 23, 20, 15]. While each paper demon-
strates some experimental results of their proposed algorithm, without a system-
atic evaluation of different symmetry detection algorithms against a common im-
age set our understanding of the power and pitfalls in state of the art symmetry
detection algorithms remains partial and incomplete. This seriously hinders any
solid improvements and wide applicability of existing symmetry detection algo-
rithms. In this paper, we make a specific effort to report a quantitative evaluation
of several state of the art symmetry detection algorithms, including:

1. Detecting Symmetry and Symmetric Constellations of Features [ 19] (ECCV06)
for both rotation and reflection symmetry detection.

2. Detecting Rotational Symmetries [25] (ICCV05) for rotation symmetry de-
tection.

3. Digital Papercutting[ 5] (SIGGRAPH 2005) for reflection symmetry detec-

tion.

4. Discovering Texture Regularity as a Higher-Order Correspondence Problem|[ 0]
(ECCV 2006) for translation symmetry detection.

S. Eight variations of the algorithm described in [10] for translation symmetry
detection.

The main reason we choose these algorithms is that they all go beyond sin-
gle bilateral reflection symmetry detection, they are all published recently (2005-
2006), their source code is publically available and their functionalities differ yet
are comparable. As a matter of fact, they all claim to detect multiple symmetries
in an unsegmented real image'.

To the best of our knowledge, our work is the first in computer vision to evalu-
ate multiple symmetry detection algorithms systematically, objectively and quan-
titatively. We provide a test image set with 243 images, labeled ground truth and
a set of evaluation standards. Our work establishes a new, validated baseline for
future research in symmetry detection. Our algorithm performance evaluation re-
sults indicate that symmetry detection research has yet to reach its desired goal of
multiple-symmetry detection from un-segmented real images.

"Except [15], which was designed for images of papercut patterns.



2 Symmetry, Symmetry Groups and Symmetry De-
tection Algorithms

Mathematically speaking, a symmetry g of a set S is an isometry such that g(S) =
S [4], i.e. the transformation g keeps .S invariant as a whole while permuting its
parts. S could be a purely geometrical entity or something geometric with addi-
tional attributes, like color or texture. All symmetries of S form a mathematical
group [4] called the symmetry group of S. There are four atomic symmetries:
translation, rotation, reflection and glide-reflection [32]. The discrete symmetry
groups in 2D Euclidean space can be further divided into (1) point groups where
all transformations in the group keep at least one point of S invariant. These are
the cyclic groups (C),) containing rotation symmetries only or dihedral groups
(Dsy,, where n is the order of its cyclic subgroup) containing both reflection and
rotation symmetries (Figure 1). (2) space groups [4] where at least one of its
members keeps no point of S invariant. These are the symmetry groups contain-
ing translation symmetries: the seven frieze (1D translation, reflection, rotation,
glide-reflection) and the 17 wallpaper symmetry groups (2D translation, rotation,
reflection, glide-reflection) (Figure 1) [32, 4]. Thus there is a total of four types
of symmetry groups (cyclic, dihedral, frieze and wallpaper) composed of the four
types of primitive symmetries (reflection, rotation, translation, glide-reflection) in
2D Euclidean space.

In this paper, we focus on the evaluation of algorithms that detect reflection,
rotation and 2D translation symmetries, respectively >. We consider the simplest
bilateral symmetry as a special case of the dihedral group Ds, where n = 1
indicating an identity group as its cyclic subgroup. We also make a distinction
between the rotational symmetric image patterns with cyclic symmetry groups C),
from those with dihedral D,,, symmetry groups (Figure 1).

2.1 Reflection/Rotation Symmetry Detection Algorithms

We briefly describe each symmetry detection algorithm evaluated in this paper
below.

1. Detecting Symmetry and Symmetric Constellations of Features[°]: This
is a feature-based reflection and rotation symmetry detection algorithm, which
takes advantage of local oriented features expressed as SIFT keys [ | 8]. The basic

2We are unable to find algorithms for glide-reflection symmetry detection, except in [ 14] where
glide-reflections are analyzed for frieze and wallpaper groups classification in real images



symmetry detection technique uses pairwise matching and voting for symmetry
foci (single reflections and C,, symmetries) in a Hough transform fashion. It also
estimates the n in cyclic group C,, but it does not make the distinction between
C, and D»,, type symmetry groups.

2. Detecting Rotational Symmetries[”5]: This algorithm filters an input color
image into a gradient vector flow (GVF) field and conducts the extraction and
matching of local features in the GVF field. The symmetry detection is formu-
lated, once again, as a voting scheme for the centroids of C), symmetries.

3. Digital Papercutting (Papercut)[!5]: This algorithm is originally designed
for the analysis of images of artistic papercutting patterns. Thus, it uses edge-
based features. The algorithm exhaustively searches through the parameter space
of potential reflection axes (in polar coordinates p, d) to identify single reflection
symmetries by voting for pairwise matches, and structures of reflection axes to
discover D, (if reflection axes intersect in one point) and frieze (reflection axes
are placed in parallel, with equal distance) symmetries.

2.2 Translation Symmetry Detection Algorithms

2D translational symmetry of an image implies that the image contains periodic
or near-regular repeating patterns (textures) (Figure 1, right) with wallpaper sym-
metry groups[4, 32]. The key insight for translation symmetry detection is to
capture the underlying quadrilateral lattice of a 2D texture, generated by translat-
ing its texture element (texel) using the two generating vectors: ¢, ¢, (bounding
a texel region) [14]. Real world textures can be considered as globally and lo-
cally deformed wallpaper patterns [16], where ¢1,%, vectors become a function
of location. Therefore, translation symmetry detection from real-world images is
equivalent to finding the underlying lattice of a piece of texture in an image.

Hays et al [10] developed the first completely automated lattice extraction
algorithm for an arbitrarily distorted (local and global) near-regular texture in an
image without segmentation. The algorithm uses a second-order matching scheme
to construct the lattice from potential texels. The affinity metrics reward lower-
order properties, such as shortness of the ¢1,%; vectors and visual similarity of
texels in an assignment; as well as the second-order property of how geometrically
similar each pair of assignments is. [10] is an iterative algorithm, alternatively
building a lattice from potential texels and then using that lattice to propose new
texels. In between each iteration a thin plate spline is used to unwarp the texture
such that the lattice is more regular. This algorithm is the focus of our translation
symmetry detection evaluation.



There are several existing algorithms for repeated pattern/texture analysis [0,
, 28, 13,27, 30, 14, 16] that we do not compare directly in this paper. This is
because (1) they [0, 17, 12, 28] place more emphasis on the appearance of indi-
vidual texels rather than the spatial relationships among the texels, thus no lattice
is detected; (2) for those algorithms where a lattice is extracted, their initialization
is not fully automatic[28, 13, 16] or no significant geometric deformations are al-
lowed [ 14]; (3) Schaffalitzky et al. [27] and Turina [30] assume that the texture has
undergone a global projective transformation without significant local geometric
distortions.

Hays et al [10] treat lattice detection problem as a correspondence problem
with second order-constraints for which finding the optimal solution is NP-hard.
First-order correspondence problems are commonly constructed as bipartite match-
ings for which the global optimum can be found in polynomial time. Even simpler,
we could construct a lattice by greedily picking available assignments until some
threshold of cost K is reached.

Therefore, we compare [10] with eight alternative lattice finding algorithms®
differing in the following ways: 1) The matching principle used to construct the
lattice: greedy, bipartite graph or higher-order correspondence; 2) the matching
procedure: single pass versus multiple iterations; and 3) the matching strategy:
unwarping with a thin-plate spline to straighten out the lattice at each iteration or
not.

3 Evaluation Methodology

Our evaluation of symmetry detection algorithms involves three major steps: (1)
collect a set of test images; (2) hand label their ground truth symmetry (axes,
centers, folds, lattices); (3) run the symmetry detection algorithms on each image
and compute the success rate based on a well-defined scoring function.

3.1 Test Image Sets Selection

To test the applicability of each symmetry detection algorithm, we provide a care-
fully selected image set with diverse visual properties: synthesized versus real im-

3While the permutation of the following variations would create twelve algorithms, unwarping
the image only occurs with multiple iterations. Thus we have nine alternative algorithms total,
[10] is one of the nine.



ages, clean versus textured, frontal view versus skewed, similar versus contrasting
colors etc.

Reflection and Rotation Symmetry Test Set We divide the test images by two
standards: (1) synthetic versus real images; and (2) images containing a single
symmetry versus multiple symmetries. Therefore we have a total of four different
sets of test images. See Figure 2 for some sample test images in each of the four
categories for rotation and reflection symmetry detection respectively.
Translation Symmetry Test Set The criteria used in selecting a translation sym-
metry test set require that the selected image must contain: 1) at least 3 cycles of
repetition in the ¢; and ?5 directions; 2) at least twenty texels and at most a few
hundred texels; 3) sufficient resolution (at least 150 pixels squared); and 4) no
self-occlusion.

Our translation symmetry test set is also divided into synthetic images (18)
and real photos (49) (Figure 3). Equivalently, in the nomenclature of [16], tex-
ture types O, I, I, and III are all represented. The geometrically distorted textures
can be further subdivided by having global geometric deformations (perspective
projection, lens distortion, smoothly curved surface...), or local geometric defor-
mations ( folds in surfaces or intrinsic shape differences). The textures range from
perfectly regular synthetic textures to extremely noisy, distorted textures from the
real world (Figure 3). A complete list of the sample images and their specific
properties can be found in our supplemental material.

The majority of the synthetic textures are designed such that the appearance
differences between texture elements are negligible. Finding the correct lattice for
these textures hinges on reasoning correctly about the geometric layout of texture
elements rather than their relative appearances. We designed the synthetic tex-
tures in this way such that we can reason about the performance of the algorithms
independent of the performance of whichever visual feature descriptor we use.

3.2 Ground Truth

Labeling ground truth for symmetry detection is a non-trivial task. The existence
of symmetries is scale dependent which is particularly true for rotation/reflection
symmetries. The symmetry axes/centers that are easily visible/markable by a hu-
man rater are counted as the ground truth symmetry.

For translation symmetries, we understand that feasible lattices are non-unique
due to their translational equivalency, or local distortions(thus the shortest possi-
ble linearly independent vectors are not unique). However, we still expect ap-
proximately the same number of texels in each valid lattice. For this reason we
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conservatively specify ground truth as the minimum number of texels that should
be found.

For rotation and reflection symmetries, we have labeled the reflection axes,
rotation center and n of the cyclic group C),,. For translation symmetries the un-
derlying lattice for each image texture is drawn.

3.3 Evalution Measurement

We use the following formula to compute a score of success rate on each image:

g, — (Nt—Kp*Nf)
K, =
Ner

ey

where NV, is the number of true positives: symmetries in the image that are de-
tected by the algorithm, N, is the number of false positives: non-symmetries
detected by the algorithm as symmetries, and Ngr is the number of ground truth
symmetries in the image that should be detected. K, is a constant weight that de-
termines how strongly we penalize the false positives. When K, = 0, Sy = -2 is

Ngr
the commonly known sensitivity that is independent of the false positives. When

K,=1.5 = (N;V;Cf:f) reflects a combination of rewarding true positives and

penalizing false positives in a 1-to-1 ratio.

4 Evaluation

We quantitatively evaluate reflection, rotation and translation symmetry detection
algorithms respectively on the corresponding test image set. We obtained the
original code from each author. In our experiments, we use the default parameter
settings without modification from image to image. Different algorithms respond
differently to image sizes, we have tested four image scales and choose the best
result to report.

We compare algorithms from [19] and [15] on reflection symmetry detection
on a set of 91 images, and compare [19] and [25] for rotation symmetry detection
on a total of 85 images. These images are divided into four categories (1) synthetic
images with single symmetry, (2) synthetic images with multiple symmetry, (3)
real images with single symmetry, and (4) real images with multiple-symmetry.
Some sample images for reflection and rotation symmetries can be found in Figure
2. Among these images, there are 7 reflection symmetry images and 14 rotation
symmetry images for which at least one of the detection algorithms fails. Thus the



statistical results provided in Tables 1 and 2 are based on 84 images for reflection
symmetry detection and 71 images for rotation symmetry detection.

We choose to report three values for each test image set: .Sy, 51, Ny (formula
1), these are sensitivity, a score combining true positives (reward) and false posi-
tives (penalize), and the number of false positives respectively. A complete under-
standing of the algorithm performance can be learned from the .Sy, Ny pair, while
S1 provides a simple one-value assessment to see the net effect of the symmetry
detection algorithm. Since it is nearly impossible to list all the non-symmetries
in an image, we do not report specificity separately. It is very interesting to no-
tice that some algorithms can have a high S; (sensitivity) but low S; value, since
the algorithm can also produce many false positives. Therefore either the Sy, Ny
pair or S alone captures the performance of a symmetry detection algorithm tak-
ing both true positives and false positives into consideration. When S; value is
negative, it means that there are more false positives than the true positives.

Table 1: Reflection Symmetry Detection Algorithms Evaluation

Alg Synthetic Images(25) Real Images(59) All Images(84)
Single Symmetry(13) Multiple-sym (12) Single Symmetry(31) Multiple-sym (28) All Symmetries
S() S1 Nf S() S1 Nf So S1 Nf So S1 Nf 50 S1 Nf
#lmean | 092 | 0.77 | 0.15 | 035 | 031 | 025 | 0.81 | 0.06 | 0.74 | 042 | 0.01 | 1.00 | 0.63 | 0.19 | 0.67
std (o) 028 | 0.83 | 0.55 | 034 | 039 | 045 | 040 | 2.06 | 1.75 | 029 | 1.16 | 2.33 | 040 | 147 | 1.74
#2mean | 0.62 | 0.54 | 0.08 | 029 | 0.19 | 042 | 0.29 | 0.23 | 0.06 | 0.16 | 0.16 | 0.00 | 0.30 | 0.25 | 0.10
std (o) 051 | 052 | 028 | 028 | 047 | 1.00 | 046 | 043 | 025 | 023 | 0.23 | 0.00 | 040 | 041 | 043
* Alg #1: Loy and Eklundh 2006; Alg #2: Liu et al. 2005
Table 2: Rotation Symmetry Detection Algorithms Evaluation
Alg Synthetic Images(22) Real Images(49) All Images(71)
Single Symmetry(9) Multiple-sym(13) Single Symmetry(25) Multiple-sym (24) All Symmetries
So S1 Nf SO S1 Nf SO S1 Nf So S1 Nf So S1 Nf
#1 mean | 1.00 | 0.78 | 0.22 | 0.21 | 0.20 | 0.08 | 0.88 | 0.20 | 0.68 | 0.32 | 0.19 | 092 | 0.58 | 0.27 | 0.59
std (o) 0.00 | 0.67 | 0.67 | 0.15 | 0.15 | 028 | 0.33 | 1.22 | 095 | 037 | 050 | 125 | 0.44 | 0.83 | 0.99
#2mean | 0.67 | 0.33 | 033 | 0.28 | 0.00 | 2.54 | 0.56 | 0.00 | 0.56 | 0.26 | -0.40 | 2.67 | 0.42 | -0.09 | 1.61
std (o) 0.50 | 1.00 | 0.50 | 0.20 | 040 | 475 | 0.51 | 1.00 | 0.71 | 031 | 1.06 | 3.78 | 043 | 095 | 3.15

* Alg #1: Loy and Eklundh 2006; Alg #2: Prasad and Davis 2005

There is a total of nine translation symmetry algorithms compared and re-
ported (Table 3) in a format similar to reflection/rotation symmetry detection,
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Table 3: Translation Symmetry Detection Algorithms Evaluation

Algorithm Components Synthetic Images Real Images All Images

Matching [ Tterative? | Warping? So [ S1 [ Ny So [ Si [ Ny So [ pv [ S [pv ][ Ng
geedy | no | nha 0.72 [ 0.71 [ 0.67 [ 020 [ 020 [ 241 [ 034 [0.00 [ 034 000 [ 194
std o 028 | 028 | 259 | 025 | 0.24 | 10.73 | 0.34 0.34 9.28

greedy [ yes [ no 0.73 | 0.72 1.83 | 046 | 045 | 2.63 | 0.53 | 0.00 | 0.52 | 0.00 | 2.42
std o 023 | 025 | 566 | 041 | 041 | 9.54 | 0.39 0.39 8.64

greedy [ yes [ yes 0.76 | 0.76 | 0.17 | 051 | 0.50 | 4.80 | 0.58 | 0.01 | 0.57 | 0.01 3.55
std o 025 | 025 | 051 | 043 | 043 | 20.19 | 041 0.40 17.35

bipartite [ no [ n/a 0.70 | 0.69 | 0.67 | 020 | 0.20 | 3.14 | 0.34 | 0.00 | 0.33 | 0.00 | 2.48
std o 027 | 0.28 | 2.38 | 026 | 0.26 | 11.55 | 0.34 0.34 9.98

bipartite [ yes [ no 072 | 072 | 839 | 048 | 048 | 4.82 | 0.55 | 0.00 | 0.54 | 0.00 | 5.78
std o 0.27 | 0.27 | 33.88 | 0.41 | 041 | 20.17 | 0.39 0.39 24.37

bipartite [ yes [ yes 0.72 | 0.71 1.06 | 0.50 | 045 | 4.67 | 0.56 | 0.00 | 0.52 | 0.00 | 3.70
std o 026 | 0.27 | 3.08 | 043 | 0.50 | 1836 | 0.40 0.46 15.82

higher-order [ no [ n/a 0.85 | 0.83 1.67 | 030 | 028 | 276 | 0.44 | 0.00 | 043 | 0.00 | 2.46
std o 029 | 032 | 414 | 030 | 030 | 819 | 0.39 0.39 7.31
higher-order [ yes [ no 090 | 0.89 | 0.61 0.59 | 0.57 | 1433 | 0.67 | 0.27 | 0.65 | 0.19 | 10.64
std o 024 | 025 | 259 | 040 | 041 | 28.76 | 0.39 0.40 25.31
higher-order [ yes [ no 0.88 | 0.88 6.17 | 0.63 | 062 | 11.94 | 0.70 | N/A | 0.69 | N/A | 10.39
std o 032 | 0.32 | 20.12 | 0.39 | 0.39 | 30.11 | 0.38 0.39 27.75

except the p-values are computed to indicate the difference of the eight variant
algorithms with respect to [ 10]. The criteria we use for declaring each texel in the
lattice correct or incorrect are the following: 1) The texel must be formed of ¢;
and ¢, connections which are geometrically consistent with the dominant, major-
ity set of self-consistent texels. 2) The texture region spanned by each lattice texel
must align with the texture region spanned by other correct texels. 3) in the case
of lattice texels on the border of the texture, at least half of the texel must cover
the texture. Scale errors are implicitly penalized since a lattice at too large a scale
will necessarily find fewer texels than ground truth.

S Summary and Discussion

Overall, the reflection/rotation symmetry detection algorithms are doing reason-
ably well on synthetic and real images with single symmetry, especially [19] with
the mean value of Sy(92-100%) for synthetic and 81-88% for real images. They
also have high variance, however, and low S; values, especially on real images
6-20%, meaning high false positives. For multiple reflection/rotation symmetry
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detections, Sy rates are in the 16-42% range, meaning more than half of the sym-
metries in an image are missed. The worst performance for all algorithms is on
multiple-symmetry in real images, the highest S; value is 16% [15] for reflection
symmetries and 19% for rotation symmetries [19].

A summary of the relative strengths and weakness of each tested reflection/rotation
symmetry detection algorithm, other than detection accuracy, is given in Table 4.

Table 4: Relative Strenghth (+) and Weakness (-) Summary

Algorithm | Loy & Eklundh | Liu et al | Prasad & Davis
[19] [15] [25]
Speed + - -
Occlusion ++ + _
Symmetry - + -
group
# Fold + N/A -
FP - + -

In summary, for all types of images the best mean sensitivity is 63% and 58%
by [19] for reflection and rotation symmetry detection respectively. For computer
vision applications, the detection of multiple symmetries from real images should
be most relevant. We have found the best mean sensitivity rates to be 42% (for
reflection) and 32% (for rotation), once again by [19]. However, for a true un-
derstanding of multiple existing symmetries in an image, we should be more con-
cerned with the overall success rate .S; (including the false positives). The best
values of Sy are much worse: 25-27% [15, 19] for reflection/rotation symmetry
detection in the overall image set, and 16-19% [ 15, 19] on real images. The drastic
drop from Sy (42%) to S1(1%) (Table 1) reveals a fatal weakness of [19], indicat-
ing its high false positive rates on real images with multiple symmetries. [15], on
the other hand, has a zero-false-positive rate on real images with multi-symmetry
while its mean sensitivity (16%) remains to be low as well.

The quantitative evaluation results of reflection/rotation symmetry detection
algorithms from our initial, limited exploration are alarming: namely, the best
symmetry detection algorithm tested fails more than 70% of the time on all-type
symmetry/images, and more than 80% on multiple reflection/rotation-symmetry
detection in real images!

The results on translation symmetry detection using our test image set (Figure
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3) yield a 88% and a 63% mean S rate on synthetic and real images respectively.
It shows, with statistical significance, that the higher-order correspondence prob-
lem formulation with iteration performs better than all other alternatives. The in-
termediate spline-wrarping used in [ 10], however, does not play a significant role.
One limitation of [10] is finding one connected-lattice only instead of multiple
lattices in one image.

The large variances exhibited in all the results (Tabels 1, 2, 3) suggest that a
much larger test image set and a finer categorization of different types of images
is needed to verify the stability, the strength and the weakness of each symmetry
detection algorithm.

Nevertheless, our initial effort on symmetry detection algorithm evaluation
presented in this paper has established a basic yet effective validation system. Our
evaluation results have provided a quantified baseline for future advance in this
area. The state of the art symmetry detection algorithms is still largely limited to
symmetry primitives(single) instead of symmetry group (set of symmetries) de-
tections. For example, [10] only detects the underlying lattice of a pattern/texture,
without investigating the intricate symmetries inside the pattern that may lead to
one of the 17 wallpaper symmetry groups [!4]. For primitive symmetries, we are
yet to find a glide-reflection detection algorithm.
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Figure 2: Sample images from our test set, ground truth, challenges, running
results and evaluated true positive (TP) and false positives (FP) from testing the
reflection (top four) and rotation (bottom four) symmetry detection algorithms.
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Figure 3: Sample thumbnails of real-world photos and synthetic images in our test
set for translation symmetry detection algorithm evaluation. See our supplemental
material for the whole set of test images and their property description.
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