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Abstract 
Symmetry is a pervasive phenomenon presenting itself in all forms and scales in natural and 
manmade environments and its detection plays an essential role at all levels of human as well as 
machine perception. The recent resurging interest in computational symmetry for computer vision and 
computer graphics applications has motivated us to conduct an US NSF funded symmetry detection 
algorithm competition as a workshop during 2011 Computer Vision and Pattern Recognition 
Conference. This competition sets the first benchmark in computer vision history for symmetry 
detection algorithms. In this report we explain the evaluation metric and the automatic execution of 
such evaluation workflow; we present and analyze the algorithms submitted, and show their results on 
three sets of real world images depicting reflection, rotation and translation symmetries respectively. 
This competition establishes a performance baseline for future work on symmetry detection. .  
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1 Introduction 
In the arts and sciences, as well as in our daily lives, symmetry has made a profound and lasting 
impact. Likewise, a computational treatment of symmetry and group theory (the ultimate 
mathematical formalization of symmetry) has the potential to play an important role in computational 
sciences. Although seeking symmetry from digital data has been attempted for over four decades, a 
fully automated symmetry-savvy recognition system still remains a challenge for real world 
applications. However, the recent resurging interests in computational symmetry for computer vision 
and computer graphics applications have shown promising results. Recognizing the fundamental 
relevance and potential power that computational symmetry affords, we conducted a survey of the 
current state of the arts symmetry detection algorithms and performed a first quantitative benchmark 
on a diverse set of real world images [1,6,7], the first of a proposed set of three benchmarks. 

In this report we present the results of the first symmetry detection competition in computer vision, 
which we shared at a dedicated workshop at the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) 2011 in Colorado Springs, Colorado. The competition was divided into three 
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parts, each focusing on one of the three types of symmetries: reflection, rotation and translation 
respectively. For each symmetry category, we collected images depicting objects with representative 
symmetry features. In order to minimize bias towards specific symmetries, we also obtained a large 
variety of symmetry images from professional and amateur photographers who signed up and 
submitted images to our Flickr photo sharing website [2]. We collected a total of four training and six 
test sets, totaling 124 images (see Figure 1).  

 

Figure 1: Four of the six image data sets are shown. (Top Left) Reflection Symmetry, (Top Right) 
Rotation Symmetry, (Bottom Right) Translation Symmetry (Urban Buildings), (Bottom Left) 
Translation Symmetry 

Each image was annotated, yielding a total of 167 reflection and rotation symmetries and over two 
thousand wallpaper tiles for translation symmetry. During the annotation phase we identified and 
specified several ambiguities that can arise during the labeling process. In all cases of ambiguities a 
tradeoff between local and global context had to be made before it could be resolved. Because this 
trade of is in almost all cases subjective in nature, we have marked such symmetries as ambiguous 
and discounted any detections by the tested algorithms.  

We received eight submissions for symmetry detection, three for reflection, two for rotation and three 
for translation symmetry. Adding one baseline algorithm to each symmetry group for comparison, we 
evaluated a total of eleven algorithms. The evaluation process was completely automated, counting 
the number of correct detections (true positives) and the number of incorrect detections (false 
positives). Detection performance is then reported in terms of precision and recall rates., for which 
the later only considers the number of true positives versus the total number of symmetries present, 
while the former also considers and penalizes for the number of false positives.  
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The quite remarkable outcome of all evaluations is that overall, none of the submitted algorithms 
performed better than their respective baseline algorithm (including execution speed of the 
algorithms). In comparison, tested algorithms performed best on reflection symmetry, second best on 
rotation symmetry and last translation symmetry. However, looking at sub categories of reflection 
symmetries, we found that one algorithm performed superior to all other tested algorithms on real 
images with multiple reflection axis present (judged on recall rate). A different algorithm outperforms 
all other algorithms on real and synthetic images depicting only a single reflection symmetry, when 
the number false positives has been taken into account (judged on precision rate). 

We established a testbed for the evaluation of symmetry detection algorithms, devised evaluation 
metrics and automated the evaluation process. We tested our process on eleven algorithms and 
established a performance baseline that can be used as reference for future work on symmetry 
detection. .  

2 Data Sets and Annotation 
In this section we provide information on the collected dataset, the employed method for annotation 
and how it will be used in the evaluation process. 

2.1 Data Collection 
The competition was divided into three parts, each focusing on one of three types of symmetries: 
reflection, rotation and translation respectively. For each symmetry category, we collected images 
depicting objects with representative symmetry features from personal photos sets of our students. In 
order to minimize bias towards specific symmetries, we also obtained a large variety of symmetry 
images from professional and amateur photographers who signed up and submitted images to our 
Flickr photosharing website [5]. We collected a total of four training and six test sets, totaling 124 
images. Figure 1 illustrates four of the six test image sets. 

2.2 Categorization of Image Data Sets 
For each symmetry type we split the obtained datasets into a number of relevant sub categories. For 
example, we split al 30 images of the reflection symmetry test set into four groups: images depicting 
synthetic versus real images and images depicting a single vs. multiple reflection symmetries. The 
purpose of this categorization is to evaluate and identify strength or weaknesses of the tested 
algorithms on specific image categories. The individual number of images and symmetries in each 
category can be extracted from Table 1.  

For rotation symmetry we replaced the categories real and synthetic with discrete, continuous and 
deformed symmetry elements. The purpose here is test for performance differences amongst images 
with discrete symmetry elements such as the pedals of a flower or the spikes of a car wheel, versus 
images with no discernable symmetry elements, such as a smooth ring. We also test images with 
deformed symmetry objects, in which the object is partially occluded or affected by some affine or 
perspective distortion. We expect algorithms to perform best on images with discrete symmetries and 
worst on images with deformed symmetry objects.  Examples and the number of images and 
symmetries in each category are given in Table 2. 

For translation symmetry we spilt the dataset into three categories: easy, medium and hard, each of 
which holds various challenges to the algorithm. The easy category holds images with clearly visible 
wallpaper structure and only mild affine distortions. The medium category holds images with strong 
wallpaper structure but more severe affine and perspective distortions, as well as irregular structures 
(e.g. wrinkles on clothing).  The hard category is most challenging due to the presence of strong and 
distracting background clutter, which in some cases is unstructured and in some cases is itself  
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Table 1: The dataset for reflection symmetry is divided into four categories, synthetic vs. real images, 
and images with single vs. multiple reflection axis. We use a total of 30 images with a combined count of 
66 reflection axis. 

Reflection Symmetry 
Image Categories & Number of Symmetries 

Category Single Multiple Total 

#Imgs #Syms #Imgs #Syms #Imgs #Syms

Synthetic 

 
8 8 7 30 15 38 

Real 

 

6 6 9 22 15 28 

Total  14 14  16 52 30 66 

 
Table 2: The dataset for rotation symmetry is divided into six categories, images with discrete vs. 
continuous symmetry elements, deformed symmetry objects, and images with single vs. multiple 
reflection axis. We use a total of 40 images with a combined count of 81 rotation symmetries. 

Rotation Symmetry 
Image Categories & Number of Symmetries 

Category Single Multiple Total 

#Imgs #Syms #Imgs #Syms #Imgs #Syms

Discrete 

 
11 11 

 
3 16 14 27 

Continuous 

 

10 10 5 25 15 35 

Deformed 

 

7 7 4 12 11 19 

Total  28 28  12 53 40 81 
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Table 3
. We

: The taset for translation metry is d three cat ies y, medium  
hard  use a total of 31 images wi a combined count over 2000 wallpaper tiles. 

da  sym
th 

ivided into 
 

egor , eas and

Translation Symmetry 
Image Categories & Number of Symmetries 

Easy Total Medium Hard 

#Images #Texels # Texels es # Texels es #Texels#Images #Imag #Imag

11  10  10  31  

   

 

 
 

tructured in form of translational symmetry. Examples and the number of images and wallpaper 
xels in each category are given in Table 3. 

rom our course on “Symmetry for Image Processing” at 
nnotation programs, developed specifically for this 

s the respective support region of the annotated symmetry. 
r point 

e 

s
te

2.3 Groundtruth Annotation 
Employing the manual power of 30 students f
Penn State, each image was annotated using a
purpose, and yielding a total of 167 reflection and rotation symmetries and over two thousand 
wallpaper tiles for translation symmetry. An example of annotation labels for each of the three 
symmetry groups is shown in Figure 2. 

Reflection symmetry axis are marked as a line with a start point p1=(x1,y1) and an end point 
p2=(x2,y2). The length of the line cover
For rotation symmetry an ellipse is defined that covers the maximal support region, with cente
c=(cx,cy), major and minor axis length L=(a,b) and the orientation θ of major axis with respect to th
image x-axis. For translation symmetry, a lattice is defined with a start point P=(x,y) and a vector 
field T (two vectors for each tile), and each tile represents the texel in a wallpaper pattern. 

Figure 2: Images with annotation labels for (Left) reflection, (Mid) rotation and (Right) translation 
symmetry. 
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2.4 Annotation Ambiguities 
During the annotation phase we identified a number of ambiguities that can arise during the labeling 

local and global context seems to play a major 
olved. Here, we give two examples from reflection 

Looking , we refer to Figure 3. Symmetry is defined as a transformation g of 
a set of points S such that g(S) = S. Traditionally S represents the entire set of points, or in the case of 
a 2D p e. Given such a global definition of symmetry, only few true symmetries 

 

When looking at Shape Ambiguity we are confronted with the problem that the definition of 
symmetry g(S)=S seldom holds true in practice. In real images, symmetric sub-parts rarely are exact 
copies of each other. Instead, slight deformation of shape and subtle differences in texture, color or 
lighting are commonplace, yet to the human eye such differences are often of little significance when 
judging symmetry (see Figure 4). Similar scenarios of ambiguity can be constructed for rotation and 
translation symmetry as well. 

 

 
ry. (Top Left) Without local context, 

t) When using a subset of the 2D plane (local 
defined. (Bottom) An example of scale 

 lines). 

process. In all cases of ambiguities a tradeoff between 
role in deciding how the ambiguity can be res
symmetry that highlight ambiguities caused by scale of context and object deformations: 

• Hierarchical Ambiguity 

• Shape Ambiguity 

 at hierarchical ambiguity

 s ace, the entire imag
can be defined. However, to the human eye many more symmetries appear when viewed on a local 
rather than global scale. 

Local Symmetries 

Figure 3: Hierarchical Ambiguity of reflection symmet
symmetry is defined over the entire image. (Top Righ
context) many different reflection symmetries can be 
dependent annotation of reflection symmetry (blue

Global Symmetries 
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Becaus

lid symmetry fades. (Bottom row) Real world examples of shape 

 

 

e a tradeoff in weighting local versus global symmetry elements is required in almost all cases 
and is extremely subjective in nature, we mark such symmetries as ambiguous and discount any 
detection by the tested algorithms so that neither the number of true positives nor the number of false 
positives is affected. 

Eventually, what is required is to define a symmetry transformation that is invariant to small and local 
disturbances of object shape and appearance. A more formal definition of such symmetry ambiguities 
is required and we see this as a very interesting and essential future work.  

? 

? ? 

Figure 4: Shape Ambiguity in reflection symmetry. (Top Row) Two squares form a perfect reflection 
symmetry along their mirror axis. However, as one of the squares changes into a triangle, the 
boundary between valid and inva
ambiguity. While reflection symmetry within an object seems legitimate, symmetry between objects 
seems to be more subjective and application dependent.  

3 Contestants and Algorithm Execution 
In this section we outline how the execution and evaluation of submitted algorithms has been carried 
out. We received eight submissions for symmetry detection, three for reflection, two for rotation and 
three for translation symmetry. Adding one baseline algorithm to each symmetry group for 
comparison, we evaluated a total of eleven algorithms. Table 4 shows all contestants and baseline 
algorithms used in this competition. 

Prior to the submission deadline, we provided potential contestants with a set of training images for 
each symmetry group. Contestants used these images to adapt and potentially fine-tune their free 
parameters in order to achieve best possible results on these training sets. 

However, we nonetheless had various issues in executing the submitted algorithms on our image test 
set. While some algorithms came with a nice Graphical User Interface (GUI), it forced us to manually
run the detection algorithm for each test image separately. Other algorithms came in form of Matlab 
code and a single point of entry (SPE), which made automatic batch processing of all images easy. 
We also received algorithms that required a number of manual steps for pre-processing, and for which 
documentation was rather scarce. After communicating with the authors most of the issues could be 
resolved. Yet, several algorithms still had abnormal terminations on a subset of images. 
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Table 4: List of research groups who have submitted symmetry detection algorithms for benchmark
evaluation in three symmetry categories. 

Symmetry 
Group 

Contestant(s) Institution(s) Algorithm/Code 

 

Mo and Draper Colorado State, USA Matlab, SPE 

Eckhardt Frauenhofer ISOB, Germany Matlab, Pipelines 

Reflection 

Kondra and 
Petrosino 

Uniparthenope, Napoli, Italy Matlab, Mex-Files, 
SPE 

Baseline Loy and Eklundh  Windows Executable, 
(publicly available 
[3]) 

Kim, Cho and Lee Seoul National University, 
South Korea 

Matlab Rotation 

Kondra and 
Petrosino 

Uniparthenope, Napoli, Italy Matlab 

Baseline Loy and Eklundh  Windows Executable, 
(publicly available 1) 

Cai Polytechnic, Hongkong, 
China 

Matlab, Mex-Files, 
GUI 

Wu University of North Windows Executable 

Translation 

Carolina, USA 

Eckhardt  Matlab, Pipelines  Frauenhofer ISOB, Germany

Baseline Park, 
Brocklehurst, 

State 
University, USA 

ble 
(publicly available 

Collins and Liu 

Pennsylvania Windows Executa

[4]) 
 

3.1 Algorithm tion 

For all three symm  the algorithm performance is measured in terms of precision and 
rec ee Fig o popular metrics for evaluating 
pattern recognition algorithm. Both can be seen as extended versions of 
metric that computes the fraction of instances for which the correct result is returned. 

When using precision and recall, the set nto 
two subsets, one of which is considered "true" metric, the 
other “false” or “in all is the o ections (true 
positives) among a  that actually belong to the correct subset (number of groundtruth 
symmetries), while precision is the fraction of correct detections among  
bel long t et, hich includes all those detections that are “true” (true 
positives) and “wrong” (false positives). 

 Evalua

etry groups
all rates (s ure 5), which are tw the correctness of a 

sensitivity, a simple 

of possible labels for a given detection is divided i
 or “correct” for the purposes of the 

correct”. Rec
ll instances

n computed as the fraction of c rrect det

those that the algorithm
ieves to be o the relevant subs  w
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Figure 5: Precision e used to evaluate the correctness of a metry detection 
lgorithm. 

, whereas recall is a measure of 

all 

 

We now explain the process of determining the number of correct and incorrect detections for 
mp

Reflection Symmetry 
For each detection result R, we measure the
angle between the detected symmetry axis (R) 
and the ground-truth axis (GT). We also 

 correct detection (true positive) is 
achieved, if the orientation between the two 

20% of the ground-truth axis length. 
 

ue) 

gle 

and recall rates ar  sym
a

Precision can be seen as a measure of exactness or fidelity
completeness. In practice, a high recall means most symmetries have been correctly detected, 
without considering a possibly high number of incorrect detections (which would imply low 
precision). High precision means that most detections are a correct detections, although not 
symmetries might have been found (which would imply low recall). 

While for reflection and rotation symmetry evaluation, recall and precision rates are computed for 
the total number of true positives and false positives over all images, the recall and precision 
scores for translation symmetry is calculated for each image separately and then combined and
averaged over the number of all images. Because the number of texels on which we count the 
number of correct detections varies vastly between images (e.g. some images have 200+ texels 
while others might have only twelve), this averaging is necessary to avoid any bias towards 
images with a high count of texels.   

each symmetry group, which has been co letely automated for this study. 

 

measure the distance (d) between the centers of 
both lines. A

axis is less then some threshold t1, and the 
distance between the two axis is less then some 
threshold t2. For an illustration please see 
Figure 6. 

For t1 and t2 we choose t1=10 degrees and t2 =    

TP = True Positives  or C

FP = False Positives  or Incorrect Detection 

orrect Detection 

FN = False Negatives    or Missed Detection 

Multiple valid detections (R1, R2) can be 
clustered if they associate with the same 
ground-truth axis. One detection result, 
however, can only be associated with one 
ground truth axis. The size of the symmetry 
support region is not further considered. 

a) b) 

Figure 6: a) A detected reflection axis R (bl
is compared to the groundtruth G (red) by 
measuring the distance d and the relative an
θ between the two axes. b) shows two examples. 

Precision = TP / (TP + FP) 

 

Recall = TP / (TP + FN) 

θ

d

G

R
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CGT

C d 

RGT

R 

C = Dete

R = Radius of detected symmetry support region 

Figure 7: A detected rotation symmetry with center 
compared against a groundtruth symmetry with ce
between the two centers is below some 

C and circular support region with radius R is 
nter CGT and region radius RGT . If the distance d 

threshold and the symmetries have a similar support region, 
lid. 

ance d between detected (C) and ground-truth 
dius R of the detected symmetry region (and use the 

lgorithm reports an ellipse instead of a circle as support 
region). A correct detection (true positive) is achieved, if the distance d between detected and 
some ground-truth symmetry center is below some shold t1, and if the radius R of the 
detected support region is within some bounds [b1, 
and for [b1, b2] we choose b1=0.8* RGT and b2=1.2 e 7. 

As with reflection symmetry, one detection result c
but multiple different detections can be matched to 

ead of a circle), 
the number of symmet olds a us). 

3.3 Translation Symmetr
We count h um  of correctly det
structure that encodes the wallpaper p
image. A quadrilateral lattice tile is r
corners match up to corners in the g
Because  different lattice structures can correctly define 
a wallpaper pattern, a gl
recoded ground-truth lattice has to be devised first.  

distance cost-
function between paired lattice points using a globally 
unique affine transformation to all detected lattice points.  

This method works reliably in most cases. In rare cases, it 
can generate false positives due to odd boundary conditions 
caused by occluding objects or the edge of the image. For 
this reason, a visual inspection has been carried out to ensure 
that only texels occluded half or less are counted as valid. 

Figure 8: A global offset between 
ground truth (red) and detected 
lattice (dotted black) is found by 
minimizing the distance between 
all lattice points under some 
optimal global affine 
transformation, applied to all tiles 
simultaneously.  

then the detected symmetry is considered va

3.2 Rotation Symmetry 
For each detection result we measure the dist
symmetry center (CGT). We also record the ra
length of the major axis, if the detection a

thre
b2]. For t1 we choose t1=max(5, 0.02*RGT) 
* RGT . For an illustration please see Figur

an match to only one ground-truth symmetry, 
one ground-truth center. Not considered in 

this evaluation are more detailed support region descriptors (such as an ellipse inst
nd the type of symmetry (e.g. discrete or continuory f

y 
 t e n ber ected tiles in a lattice 

attern present in an 
 co rect if all its four 
round-truth lattice. 

many
obal matching between detected and 

We have created an automated method of lattice evaluation 
[4] that establishes a mapping between a detected lattice T 
and the ground truth lattice G by minimizing a  

cted mmetry center  sy

RGT = Radius of symmetry center (groundtruth)

CGT = Sy

d = distanc

 

 

 

 

 

mmetry Center (groundtruth) 

e between s mmetry centers y
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4 Results  
We now present results on the symmetry detection competition. For each symmetry group w
show precision and recall rates overall and for each contestant and for each image category. 
Sample detection outputs and side-by-side comparisons can be found in the figures at the end of 
this document. 

4.1 Reflection Symmetry 
Overall, the algorithm by Loy and Eklundh (our baseline) outperforms all contestants with a 

e 

 

 equally 
well or better than our baseline algorithm. 

 performs better than Mo’s algorithm (0.64 versus 
 in three out of four image categories. 

es: 0.55 versus 0.53, and Real Images: 
ry does Mo’s algorithm perform better 

s algorithm exhibits a relatively 
 and Eklundh’s algorithm and 

with recall, Mo’s algorithm achieves best 
 categories our baseline algorithm 

 

 

recall rate of 0.68, compared to the algorithm by Kondra with a recall rate of 0.64 and that of Mo 
with a recall rate of 0.47. This performance advantage is due to a single image category, namely
synthetic images, in which Loy and Eklundh outperform all others with a clearer margin (0.68 
versus 0.55 and 0.53). In all other categories the algorithms by our contestants perform

Among the contestants, Kondra’s algorithm
0.47). In fact Kondra’s algorithm performs better than Mo’s
Multiple symmetry Axis: 0.65 versus 0.38, Synthetic Imag
0.75 versus 0.46. Only in the single symmetry axis catego
than Kondra’s algorithm (0.93 versus 0.57).  

When we look at precision rates, the picture changes. Kondra’
high number of false positives, when compared to Mo’s or Loy
therefore offers consistently less precision. Again, as 
precision on images with a single reflection axis. In all other
performs best. 

Figure 9: Recall and precision rates for reflection symmetry detection 
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We also compare execution times of all 
algorithms (see Figure 10). The baseline 
algorithm again performs best with an 
average execution time per image of 0.97 
seconds. Mo’s algorithm compares favorably 
with 3.8 seconds, while Kondra’s algorithm 
takes on average 15.6 seconds per image. All 
computations were performed on a Windows 
Vista 64bit machine with an i7, 2.67G cpu (8 

images with single (0.31 versus 0.14) and deformed rotation symmetries (0.21 versus 0.12).  On 

ion sy

 

core), 6GB ram and used Matlab R2008b. 

4.2 Rotation Symmetry 
Overall, our baseline algorithm by Loy and 
Eklundh clearly outperforms all other 
algorithms by a significant margin: 
Recall=0.51 versus 0.21 (Kondra) and 0.16 (Kim). It also performs best in each image category 
(see Figure 11). 

Amongst the contestants, Kondra’s algorithm performs overall better than Kim’s algorithm 
(Recall=0.21 versus 0.16). Kondra’s algorithm is especially better than Kim’s algorithm on 

images with continuous symmetries, we observe that Kim’s algorithm has not produced a single 
correct detection. However, Kim’s algorithm performs better then Kondra’s algorithm on images 
with discrete (0.41 versus 0.626) and multiple rotation symmetries (0.17 versus 0.15).  

mmetry detection. 

Average Execution Time

18
15.6

3.8

0.97

0

2

4

6

Kondra and Petrosino

8

10

12

14

16

seconds 
/ image

Mo and Draper

Loy and Eklundh

Figure 10: Average algorithm execution time in 
seconds for one reflection symmetry image. 

 

Figure 11: Precision and Recall rates for rotat
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Again similar to reflection 

.3 Translation Symmetry 

Figure 13: Issues with algorithm outputs for translation symmetry detection. 

 

symmetry, when we look at 
precision rather than recall rates, our 
baseline algorithm performs best 
overall, while Kondra’s relatively 
high number of false positives 
changes the performance picture in 
favor of Kim’s algorithm in all 
image categories.  

We also compare execution times of 
all algorithms (see Figure 12). Our 
baseline algorithm again performs 
best with an average execution time 
per image of 0.59 seconds. 
Kondra’s algorithm now compares 
favorably with 6.9 seconds per image, while Kim’s algorithm takes on average 68.2 seconds per 
image. 

Figure 12: Average execution time in seconds for one 
rotation symmetry image. 

4
Evaluation of translation symmetry detection was unfortunately not as straightforward as it has 
been for reflection and rotation symmetry detection. The three submissions we have received did 
not end up conforming to the evaluation standard (see Figure 13) as laid out and published by us 
on our website [5].  

Cai’s output is not a valid lattice structure 

 

 

Wu’s output often only shows 
vanishing lines 
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4.3.1 Issues with su
The algorithm by Y. Cai requires user input to provide an initial guess for the lattice structure, 
making a fair comparison to other algorithms, in particular our baseline, impossible. Further 
complicating the evaluation is that Cai’s algorithm output format does not comply with our 
standard lattice format. We were un

bmitted 

able to find a suitable technique to convert their output format 

. Eckhardt was initially designed only for reflection symmetry detection but 
odify it for translation symmetry detection as well. 

rth communication, and the realization that the 

n 1 
sforming th m into a 

v dismissed al ation 
was not possible. The total number of test images for which all contestants reported valid results 
where then only four images (two from easy set, and one from each of medium and hard sets). 

 

algorithms 

to ours. The algorithm by C. Wu is primarily designed for 1D frieze pattern detection on building 
facades, and requires strong horizontal features for vanishing point detection. It nonetheless 
worked on some of our test images but failed on many others.  

The algorithm by M
an attempt has been made by its author to m
However, after a long series of back and fo
modification did not bring about the desired results; the algorithm was eventually withdrawn 
from the translation symmetry detection competition. 

4.3.2 Evaluatio
We attempted quantitative evaluation by tran

alid lattice format when ever possible. We 
e output lattice by Cai’s algorith
l results for which this transform

Figure 14: Precision and Recall rates for translation symmetry evaluation No. 1. Number triplet 
(a,b,c) means number of images used for each contestant. Here we used the only four images for 
which all contestants got valid results. 
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We observe that overall our baseline algorithm performs best with a recall rate of 76% compared
to 36% (Cai) and 19% (Kim). Due to the small number of test images used for this evaluation, 
any further discussion of performance characteristics seems insensible. 

4.3.3 Evaluation 2 

 

 separately on its own set of valid output images. However, by doing 
out comparing the obtained performance results, because each 

ts, 
lid output results. In 

cision the baseline algorithm performs significantly better than the 

We evaluated each algorithm
so we need to be cautious ab
algorithm is evaluated on a different set of test images. 

 

Figure 15: Precision and Recall rates for translation symmetry evaluation No. 2. Number triplet 
(a,b,c) means number of valid images considered for each contestant. Here each algorithm was 
evaluated independently on all its valid output results 

 

 

 

We observe that out of a total of 31 test images, Cai’s algorithm produced 21 valid output resul
Wu’s algorithm produced 18 and our baseline algorithm produced 30 va
terms of both recall and pre
two contestants (Figure 15).  
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5 Conclusion  
 

As the organizers of the first symmetry detection algorithm competition we have learned a lot 
through this process. First of all, from a research point of view, we learned how difficult it is to 
determine, unambiguously, groundtruth for real world symmetries. The difficulty resides in both 
local (hierarchical) symmetries and the degree of symmetry-ness. Further research by establishing 
a more adaptive real world symmetry model and using crowd sourcing will be carried out. Second, 
we realize that the algorithm evaluation using single point (single parameter setting given by the 
contestant) precision/recall rates is insufficient and partial for comparison. For future evaluation 
of each algorithm, we need to determine a ‘tunable’ knob inside the algorithm (provided by the 
contestant) to generate a receiver operating characteristic (ROC) curve, then compare the areas 
under the ROC curves. Third, standardizing the evaluation process becomes more and more 
important with the size increase of the test image sets. We have, for this competition, used such 
automated evaluation methods for the first time (reflection, rotation in particular). However, the 
output format of the submitted algorithms need to be enforced for future performance evaluations, 
especially for translation symmetry detection. 

Overall we are pleased and excited that the first benchmark for symmetry detection algorithms 
has been set up for the computer vision community. Future effort can be built upon what we have 
established to further expand and solidify the test image set, annotations, quantitative evaluation 
standards and automatic evaluation tools. We have made our training and testing image sets with 
associated ground truth publicly available 
(http://vision.cse.psu.edu/research/symmComp/index.shtml). We welcome any comments, 
feedback, and additions to our existing image data sets and evaluation tools.  
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