Multi-Scale Kernel Operators for Reflection and Rotation Symmetry

Shripad Kondra ${ }^{1,2}$, Alfredo Petrosino ${ }^{1,}$ Alessio Ferone ${ }^{1}$
${ }^{1}$ Department of Applied Science, University of Naples Parthenope, ITALY
${ }^{2}$ National Brain Research Centre, INDIA
CVPRLab@UniParthenope, Naples
http://www.cvprlab.uniparthenope.it

Symmetry

-The property of being symmetrical: correspondence in size, shape, and relative position of parts on opposite sides of a dividing line or median plane or about a center or axis.
\square In particular, we deal with bilateral symmetry.
\square A measure obtained by using correlation with the flipped image around a particular axis.
\square Di Gesù et al. (2007) has proven that, in any direction, the optimal symmetry axis corresponds to the maximal correlation of a pattern with its symmetric version.

Symmetry Transform

$$
S_{\theta}(X)=\int_{X} m(x) \times \delta^{2}(x, r(b, \theta)) d x
$$

where $r(b, \theta)$ is the straight line with slope θ passing through b , $m(x)$ is the intensity value in $x \in$ X, and δ is a distance function of x from the straight line.

Symmetry Kernel

\square Definition
The S-kernel of the pattern X is the maximal for inclusion symmetric (pattern) subset of X.

Symmetry Kernel

\square Algorithm

Find the maximum correlation of the picture in a given direction with its mirror symmetric version in that direction.

Foreach $n \times n$ patch X around a pixel i do
Foreach θ do

1. Whiten X
2. Create X_{θ} as rotated image patch by θ
3. Create X^{x} and X^{y} as reflected patches with respect to x-axis and to y-axis
4. Calculate the maximum between $X_{\theta} \otimes X^{x}$ and $X_{\theta} \otimes X^{y}$ End
$\hat{\theta}=\arg \max _{\theta} S_{\theta}(X)$
End

Tweaks

\square Instead of taking every point in the image, downsample to increase speed by filtering with circular steerable filters (Simoncelli et al., 1992)
\square Reflecting the patch around both x-axis and y-axis will save half the rotations of the patch.
\square For color images, RGB space is used and the patch is reflected with respect to the three bands before doing the correlation.

Detecting Multiple Reflection Symmetry

\square Algorithm

1. Let $p(\theta)$ be the distribution of angles θ (symmetry axis)
2. Create $A=\{\theta \mid p(\theta) \geq \sigma\}$
3. Foreach θ in A do

3a. Create $M_{\theta}=\{(x, y) \mid \theta(x, y)=\theta\}$
3b. Dilate M_{θ}
3c. Find the connected components R_{θ}^{j}
3d. Find the Centroid and Major axis of R_{θ}^{j}
End

Multiple Reflection Symmetry Results

Number of symmetries detected for scale 1:2

Number of symmetries detected for scale 1:4

Number of symmetries detected for scale 2:2

Number of symmetries detected for scale 2 : 4

Multiple Reflection Symmetry Results

Number of symmetries detected for scale 1:6

Number of symmetries detected for scale 1:9

Number of symmetries detected for scale $2: 5$

Multiple Reflection Symmetry Results

Number of symmetries detected for scale 1:3

Number of symmetries detected for scale 1:3

Number of symmetries detected for scale 2:1

Number of symmetries detected for scale 2:3

Detecting Multiple Rotation Symmetry

\square Algorithm

1. Let $p(\theta)$ be the distribution of angles θ (symmetry axis)
2. Initialize $G=\varnothing$
3. Create $A=\{\theta \mid p(\theta) \geq \sigma\}$
4. Foreach θ in A do

4a. Create $M_{\theta}=\{(x, y) \mid \theta(x, y)=\theta\}$
4b. Dilate M_{θ}
4c. $\mathrm{G}=\mathrm{G}+M_{\theta}$
End
5. Threshold and dilate G
6. Find connected components R^{j} in G
7. Find the Centroid and Major axis of R^{j}

Example

Number of Rotation symmetries for scale $1: 3$ Number of Rotation symmetries for scale $2: 2$

Multiple Rotation Symmetry Results

Number of Rotation symmetries for scale 1:3

Number of Rotation symmetries for scale 2 : 2

Number of Rotation symmetries for scale 1: 11

Number of Rotation symmetries for scale 2 : 2

Multiple Rotation Symmetry Results

Number of Rotation symmetries for scale 1: 1

Number of Rotation symmetries for scale 2: 1

Number of Rotation symmetries for scale 1: 1

Number of Rotation symmetries for scale 2 : 0

Multiple Rotation Symmetry Results

Number of Rotation symmetries for scale 1:2

Number of Rotation symmetries for scale $2: 3$

Number of Rotation symmetries for scale 1: 1

Number of Rotation symmetries for scale 2:0

Ongoing work

- Find interest points
- Determine symmetry axis
- Classification using the distribution of the local symmetries
- Image Registration/Matching

Texture separation

Original Image

Original Image

Rotated Image

Symmetry distribution

Angle distribution

Texture Separation

Symmetry Features and Classification

- The feature vector is based on

1. Distribution of symmetry with 11 histogram bins in the range $[0,1]$, with bin width 0.1 .
2. Sorted distribution of symmetry directions (14 different directions are used)
3. Distribution of entropy with 5 bins in the range [0, $0.6]$, with bin width 0.15

- The histogram is then classified using SVMs.

Texture Separation

- Symmetry can be used to help the classification results between uniform and non-uniform textures.

Feature	Recognition rate (\%) on subset of Brodatz dataset
Symmetry	72.98 ± 1.8
Textons [8]	95.97 ± 0.72
Textons + Symmetry (weight $=0.4$)	98.27 ± 1.4

\square The combination of textons and symmetry thus improves the result.

Texture Separation

- The texture datasets are UIUCTex, KTH-TIPS, Brodatz, and CUReT.

Database	UIUCTex	KTH-TIPS	Brodatz	CUReT
Ours	96.9 ± 0.8	98.1 ± 1.1	94.0 ± 0.9	98.5 ± 0.2
Kondra [13]	92.9 ± 1.2	97.7 ± 0.8	92.3 ± 1.0	97.0 ± 0.4
Zhang [30]	98.3 ± 0.5	95.5 ± 1.3	95.4 ± 0.3	95.3 ± 0.4
Hayman [7]	92.0 ± 1.3	94.8 ± 1.2	95.0 ± 0.8	98.6 ± 0.2
VZ-joint [28]	78.4 ± 0.9	92.4 ± 1.4	92.9 ± 1.0	96.0 ± 0.7
Lazebnik [14]	96.4 ± 2.0	91.3 ± 2.1	89.8 ± 0.8	72.5 ± 0.4
G. Gabor	65.2 ± 2.0	90.0 ± 2.0	87.9 ± 1.0	92.4 ± 0.5

Acknowledgement

\square Project FIRB IntelliLogic
Italian Ministry of Education, Universities and Research

We would like to dedicate this work to Vito Di Gesù who enthusiastically inspired the study about symmetry.

