

Multi-Scale Kernel Operators for Reflection and Rotation Symmetry

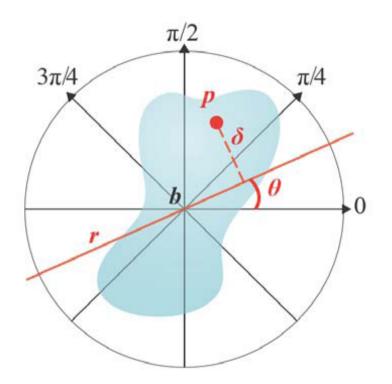
Shripad Kondra^{1,2}, Alfredo Petrosino^{1,} Alessio Ferone¹

¹Department of Applied Science, University of Naples Parthenope, ITALY ²National Brain Research Centre, INDIA

CVPRLab@UniParthenope, Naples http://www.cvprlab.uniparthenope.it

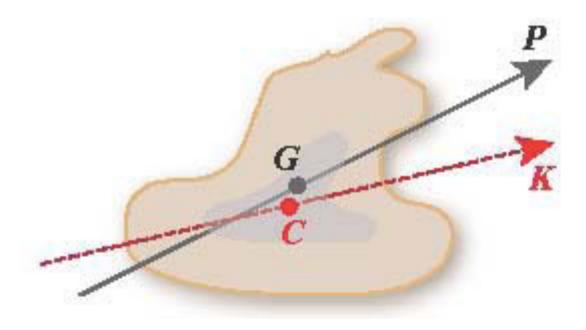
Symmetry

The property of being symmetrical: correspondence in size, shape, and relative position of parts on opposite sides of a dividing line or median plane or about a center or axis.


- □ In particular, we deal with bilateral symmetry.
- □ A measure obtained by using correlation with the flipped image around a particular axis.
- Di Gesù et al. (2007) has proven that, in any direction, the optimal symmetry axis corresponds to the maximal correlation of a pattern with its symmetric version.

Symmetry Transform

$$S_{\theta}(X) = \int_{X} m(x) \times \delta^{2}(x, r(b, \theta)) dx$$


where $r(b,\theta)$ is the straight line with slope θ passing through b, m(x) is the intensity value in $x \in X$, and δ is a distance function of *x* from the straight line.

Definition

The *S*-kernel of the pattern *X* is the maximal for inclusion symmetric (pattern) subset of *X*.

Algorithm

Find the maximum correlation of the picture in a given direction with its mirror symmetric version in that direction.

```
Foreach n \times n patch X around a pixel i do

Foreach \theta do

1. Whiten X

2. Create X_{\theta} as rotated image patch by \theta

3. Create X^{x} and X^{y} as reflected patches with respect to x-axis

and to y-axis

4. Calculate the maximum between X_{\theta} \otimes X^{x} and X_{\theta} \otimes X^{y}

End

\hat{\theta} = \arg \max_{\theta} S_{\theta}(X)
```

End

- Instead of taking every point in the image, downsample to increase speed by filtering with circular steerable filters (Simoncelli et al., 1992)
- Reflecting the patch around both x-axis and y-axis will save half the rotations of the patch.
- For color images, RGB space is used and the patch is reflected with respect to the three bands before doing the correlation.

Detecting Multiple Reflection Symmetry

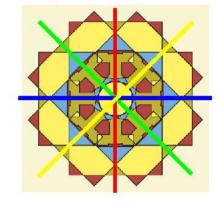
Algorithm

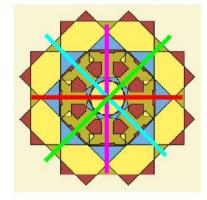
- **1.** Let $p(\theta)$ be the distribution of angles θ (symmetry axis)
- **2.** Create $A = \{\theta \mid p(\theta) \ge \sigma\}$
- **3.** Foreach θ in A do
 - **3a.** Create $M_{\theta} = \{(x,y) | \theta(x,y) = \theta\}$
 - **3b.** Dilate M_{θ}
 - **3c.** Find the connected components $R^j_{ heta}$
 - **3d.** Find the *Centroid* and *Major axis* of R_{θ}^{j}

End

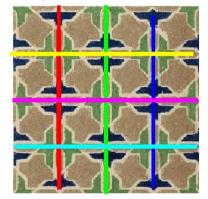
CVPR 2011 – June 24 2011

Multiple Reflection Symmetry Results

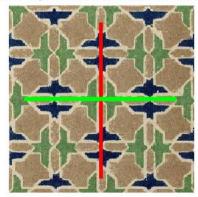

Number of symmetries detected for scale 1:2


Number of symmetries detected for scale 2 : 2

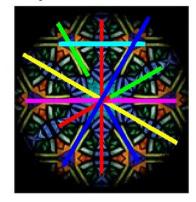
Number of symmetries detected for scale 1:4



Number of symmetries detected for scale 2:4

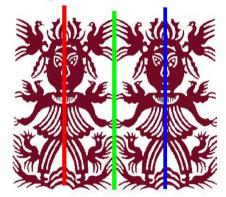


Multiple Reflection Symmetry Results


Number of symmetries detected for scale 1:6

Number of symmetries detected for scale 2 : 2

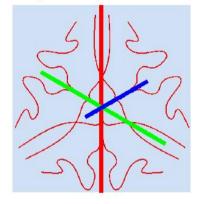
Number of symmetries detected for scale 1:9

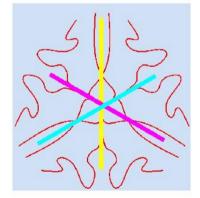


Number of symmetries detected for scale 2 : 5



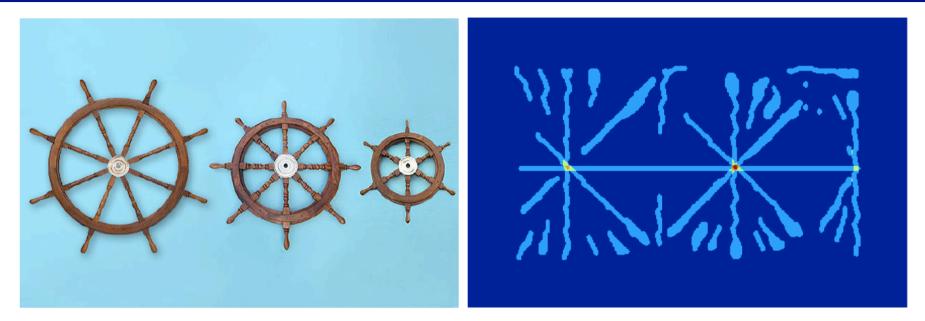
Multiple Reflection Symmetry Results


Number of symmetries detected for scale 1:3

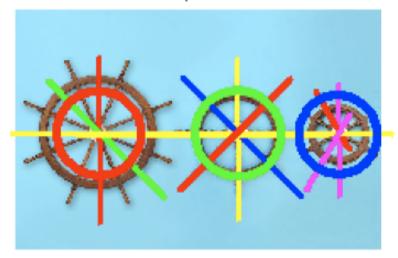

Number of symmetries detected for scale 2 : 1

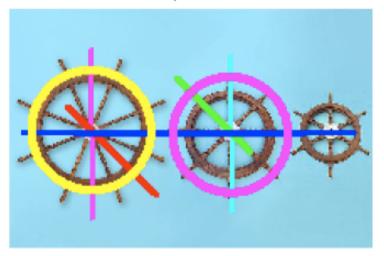
Number of symmetries detected for scale 1:3

Number of symmetries detected for scale 2:3

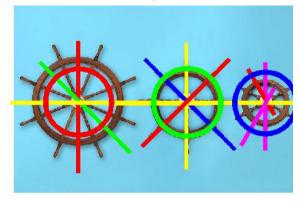


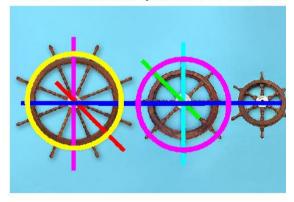
Algorithm

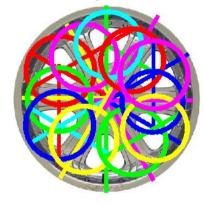

- **1.** Let $p(\theta)$ be the distribution of angles θ (symmetry axis)
- **2.** Initialize $G = \emptyset$
- **3.** Create $A = \{\theta \mid p(\theta) \ge \sigma\}$
- **4.** Foreach θ in A do **4a.** Create $M_{\theta} = \{(x,y) | \theta(x,y) = \theta\}$ **4b.** Dilate M_{θ} **4c.** G = G + M_{θ} End
- 5. Threshold and dilate G
- **6.** Find connected components R^{j} in G
- **7.** Find the *Centroid* and *Major axis* of R^{J}

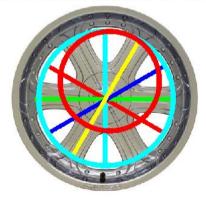

Example

Number of Rotation symmetries for scale 1 : 3 Number of Rotation symmetries for scale 2 : 2



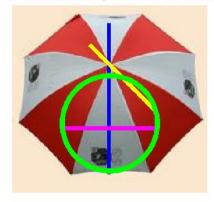

Multiple Rotation Symmetry Results

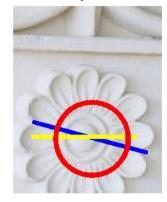

Number of Rotation symmetries for scale 1:3


Number of Rotation symmetries for scale 2 : 2

Number of Rotation symmetries for scale 1 : 11

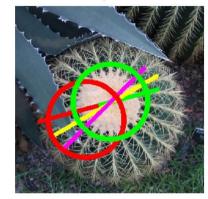
Number of Rotation symmetries for scale 2 : 2


Multiple Rotation Symmetry Results


Number of Rotation symmetries for scale 1 : 1

Number of Rotation symmetries for scale 2 : 1

Number of Rotation symmetries for scale 1:1


Number of Rotation symmetries for scale 2 : 0

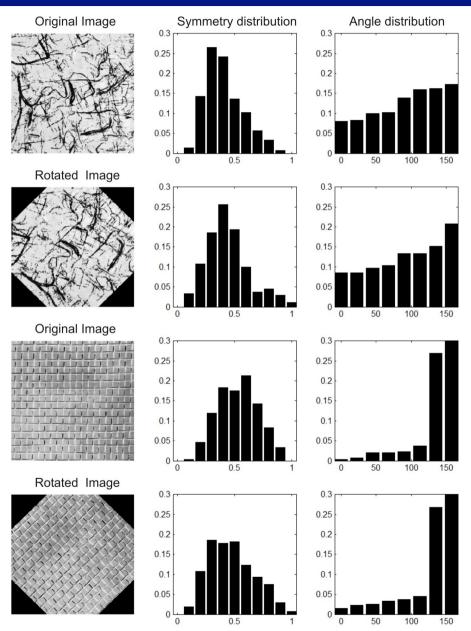
Multiple Rotation Symmetry Results

Number of Rotation symmetries for scale 1 : 2

Number of Rotation symmetries for scale 2 : 3

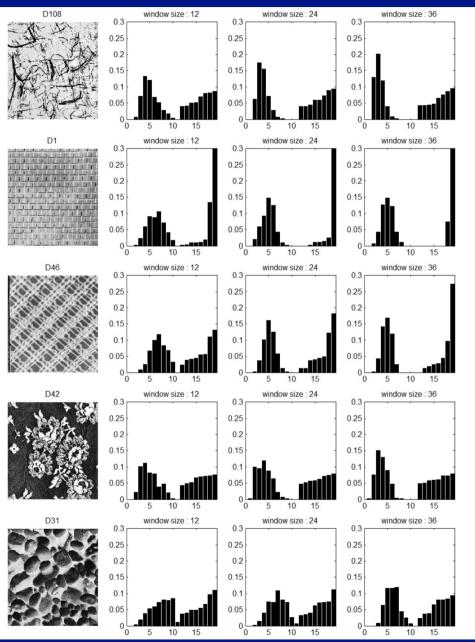
Number of Rotation symmetries for scale 1 : 1

Number of Rotation symmetries for scale 2 : 0



- □ Find interest points
- Determine symmetry axis
- Classification using the distribution of the local symmetries
- Image Registration/Matching

Texture separation



CVPR 2011 – June 24 2011

Texture Separation

CVPR 2011 – June 24 2011

The feature vector is based on

- 1. Distribution of symmetry with 11 histogram bins in the range [0,1], with bin width 0.1.
- 2. Sorted distribution of symmetry directions (14 different directions are used)
- Distribution of entropy with 5 bins in the range [0, 0.6], with bin width 0.15

□ The histogram is then classified using SVMs.

Symmetry can be used to help the classification results between uniform and non-uniform textures.

Feature	Recognition rate (%)		
	on subset of Brodatz		
	dataset		
Symmetry	72.98 ±1.8		
Textons [8]	95.97 ± 0.72		
Textons + Symmetry	98.27 ± 1.4		
(weight = 0.4)			

The combination of textons and symmetry thus improves the result.

The texture datasets are UIUCTex, KTH-TIPS, Brodatz, and CUReT.

Database	UIUCTex	KTH-TIPS	Brodatz	CUReT
Ours	96.9 ± 0.8	98.1 ± 1.1	94.0 ± 0.9	98.5 ± 0.2
Kondra [13]	92.9 ± 1.2	97.7 ± 0.8	92.3 ± 1.0	97.0 ± 0.4
Zhang [30]	98.3 ± 0.5	95.5 ± 1.3	95.4 ± 0.3	95.3 ± 0.4
Hayman [7]	92.0 ± 1.3	94.8 ± 1.2	95.0 ± 0.8	98.6 ± 0.2
VZ-joint [28]	78.4 ± 0.9	92.4 ± 1.4	92.9 ± 1.0	96.0 ± 0.7
Lazebnik [14]	96.4 ± 2.0	91.3 ± 2.1	89.8 ± 0.8	72.5 ± 0.4
G. Gabor	65.2 ± 2.0	90.0 ± 2.0	87.9 ± 1.0	92.4 ± 0.5

Project FIRB IntelliLogic

Italian Ministry of Education, Universities and Research

□ We would like to dedicate this work to **Vito Di Gesù** who enthusiastically inspired the study about symmetry.