

Reflection Symmetry Integrated Image Segmentation

Yu Sun, Bir Bhanu

Center for Research in Intelligent Systems University of California, Riverside Riverside, California, 92521

E-mail: ysun@ee.ucr.edu

June 24, 2011

VISLAB www.vislab.ucr.edu

Symmetry-integrated Segmentation

UCRIVERSITY OF CALIFORNIA

- Symmetry is a high level concept present in natural and manmade objects.
- Challenge:

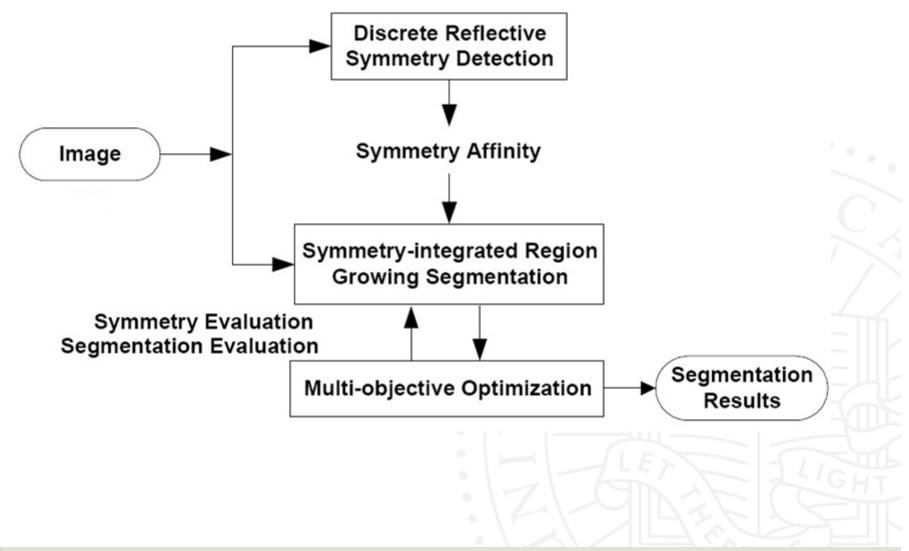
How a high level concept of symmetry can be used for low level (pixel-based) segmentation?

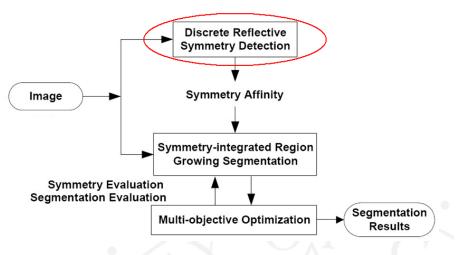
Solution:

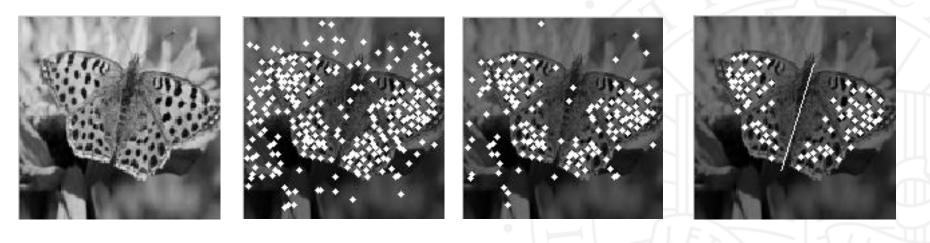
Symmetry is integrated through affinity in a region growing segmentation approach

Contributions:

First work to use symmetry for the segmentation of an ENTIRE image



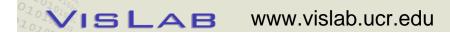




Symmetry Detection

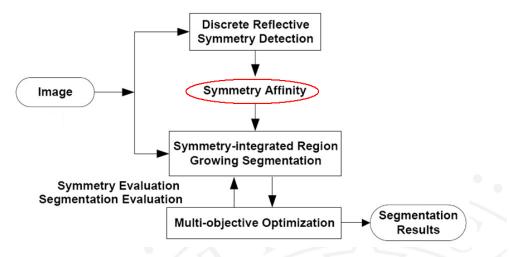
UC RIVERSITY OF CALIFORNIA

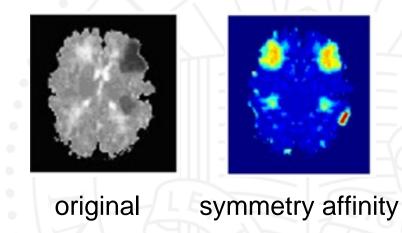
Global symmetry axis detection: using Constellations of Features (Loy et al., ECCV 06')



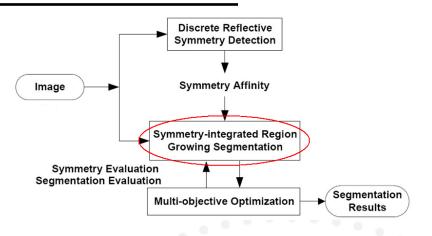
SIFT points

local symmetric pairs


vote for global symmetry axis



Symmetry Affinity: $C_i = |Curv_i - Curv_j|$ (Prasad et al., IEEE TIP 04')

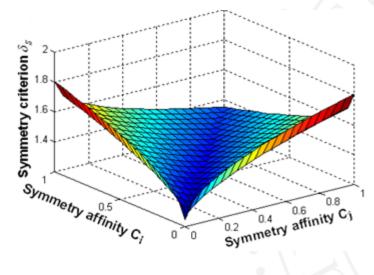

- Pixel *i* and its symmetric counterpart *j* reflected by the axis *Curv_x*: Pixel's curvature of gradient vector flow (CGVF)
 Pixel *i* and *j*: Closer CGVFs ->
- Iower affinity -> higher symmetry

Symmetry-integrated Segmentation

• Region growing: pixel *i* is grown into neighboring region *j* if their similarity Cue: $\delta(i, j) < \delta_m$

Traditional region Growing

- $-\delta(i,j) = \delta_R(i,j) = \delta_{Color}(i,j) + \delta_{Texture}(i,j)$
- $\delta_{Color}(i, j) = \|F_{Color}(i) F_{Color}(j)\|$:color similarity cue (HSV)
- $\delta_{Texture}(i, j)$: texture similarity cue (Gabor features)
- Symmetry-integrated Region Growing
 - $\delta(i,j) = \delta_R(i,j) \cdot \delta_S(i,j)$



The symmetry cue:

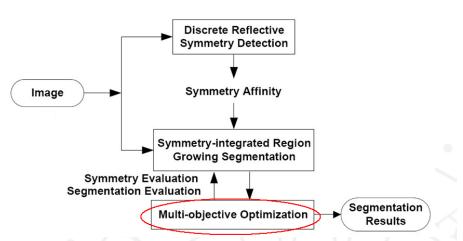
$$\delta_{s}(i,j) = \frac{\frac{\pi}{2} + \arctan(\sqrt{(1+C_{i})(1+C_{j})})}{\pi} + \frac{1+|\sqrt{C_{i}} - \sqrt{C_{j}}|}{2}$$

- Ci and Cj: symmetry affinities of pixel i and neighboring region j
- High level symmetry concept is used as a low level (pixel-based) cue
- Smaller/closer affinities -> smaller cue > pass the threshold -> complete symmetric region

Symmetry-integrated Segmentation

Segmentation using symmetry cue

segmentation without symmetry cue

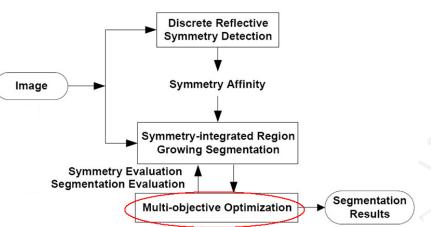


/ISLAB

Performance Evaluations

- Supervised Segmentation
 Evaluation: pixel-based region
 overlap with ground-truth
 segmentation
 [Hafiane et al., ACIVS 07']
- Unsupervised Segmentation
 Evaluation: pixel-based interand intra-region contrast
 [Borsotti et al., PR Letters 98']

- Symmetry Evaluation: region's symmetry level in segmented image



Multi-objective Optimization: NSGA-II

[Kodali et al., ICETET 08']

- Objective functions: segmentation and symmetry evaluations
- Search space: thresholds for pixel agglomeration and region merging

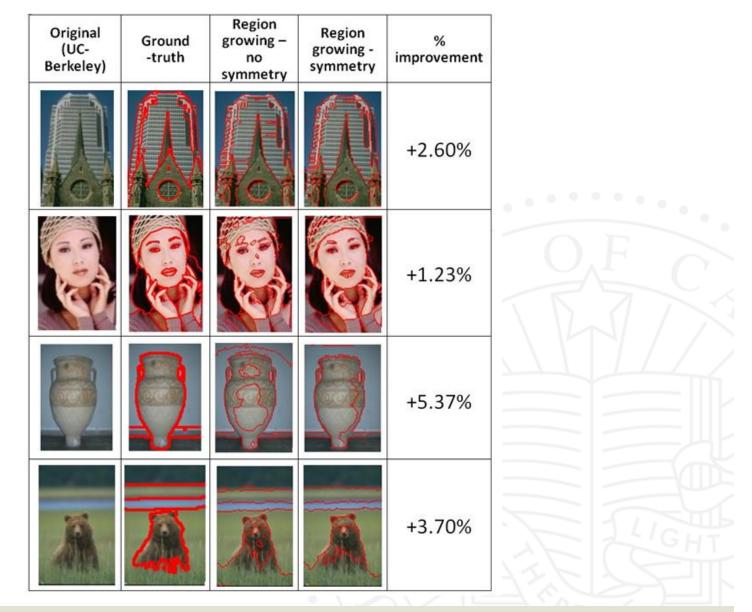
UC RIVERSITY OF CALIFORNIA

UC-Berkeley Segmentation Benchmark:

- 36 images with full and partial symmetric objects
- Ground-truth segmentation: publicly available

Caltech-101 Database:

- 127 images with full and partial symmetric objects
- Ground-truth segmentation: extracted manually



VISLAB

Region Growing: Symmetry vs. no Symmetry

www.vislab.ucr.edu

Comparison with other Segmentation Methods

(a) Original (b) Ground-truth

(c) Region growing
- symmetry
(d) Region growing
- no symmetry

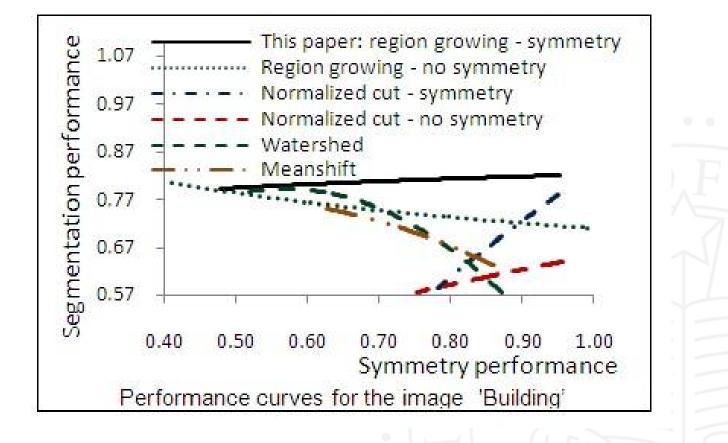
(e) Normalized cut

symmetry
[Gupta et al., ICIP 05']

(f) Normalized cut

no symmetry

(g) Watershed (h) Meanshift


Images in UCB	Comparison: proposed method			
dataset	With symmetry	No symmetry	% improvement	
Building	75.48%	73.57%	+2.60%	
Man	Man 72.58%		+1.27%	
Woman	71.44%	70.57%	+1.23%	
Vase	76.70%	76.42%	+0.37%	

Images in UCB	Comparison: symmetry-based normalized cut				
dataset	With symmetry	No symmetry	% improvement		
Building	69.99%	68.36%	+2.38%		
Man	66.42%	65.01%	-2.48%		
Woman	68.76%	68.13%	+0.92%		
Vase	69.13%	69.01%	+0.17%		

Images in UCB dataset	Watershed	Meanshift	
Building	74.62%	63.37%	
Man	67.29%	62.83%	
Woman	66.52%	61.28%	
Vase	68.34%	61.03%	

Center, Research Intelligent Systems Segmentation Results: with Various Distortions UCRIVERSIDE

Distortions	Original	Axis	Segmentation - symmetry	Segmentation – no symmetry	% improvement	
Occlusion					+0.16%	
Perspective					+1.21%	$O_{A}F$
Affine	CEI.		EI .		+1.19%	HIZ
Multiple	A BOR			<u>1999</u>	+4.66%	
Articulation					+1.79%	

- 1. We use symmetry as a new cue in region-based image segmentation, along with other cues like color and texture.
- 2. With the symmetry cue enforced, both the symmetry and segmentation are improved with the amount of 1%-9%.
- 3. Our method has better performance compared to several other well known region-based segmentation methods.
- 4. If no symmetry axis is detected, our method is equal to the traditional region growing without symmetry.

THANKS!

