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Semantic Segmentation of Urban ScenesSemantic Segmentation of Urban Scenes

• Image Parsing
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• Cropped and Rectified Building Images:  `Facade Parsing’
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ImageImage--based Procedural 3D Modelsbased Procedural 3D Models

• Based on 2D parsing + simple extrude and insertion rules turn 2D to 3D…
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Problem StatementProblem Statement

• Input: image       

• Output: labelling

• Pixel-level classification function:

• Objective:

• Wanted:
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– Top level: axiom

– Recursive application of shape operators

• Partition domain and assign label to each part

– Terminals: semantic labels (e.g. window, door etc)

Shape Grammars: Recursive Derivation of LabellingShape Grammars: Recursive Derivation of Labelling
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Binary Split GrammarsBinary Split Grammars

– Binary:

– Split: one dimension at a time

N1 a N2

N2 b N1
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ChallengesChallenges
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REINFORCEMENT LEARNING FOR REINFORCEMENT LEARNING FOR 

SHAPE GRAMMAR PARSINGSHAPE GRAMMAR PARSING
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The 1D caseThe 1D case

Task: horizontal split(s) of image slice Binary Split Grammar

• 2 rules

floorWall wall floorWin

floorWin win floorWall

• Recursive segmentation
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• Agent iteratively interacting with environment

– Agent takes action, lands in new state

– Environment yields reward

Markov Decision Process (MDP) formulationMarkov Decision Process (MDP) formulation

Environment

Agent

– Potentially stochastic state transition and reward functions

• Goal: maximize cumulative reward

• Markov assumption
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MDP & Policy functionsMDP & Policy functions

• Policy function adopted by agent:

• Merit function

– Expected reward-to-go if at s we perform α, and then follow π

• ε-greedy policy:• ε-greedy policy:

• Reinforcement learning (Q-learning)
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Policy Evaluation

Policy Improvement



Reinforcement Learning AlgorithmReinforcement Learning Algorithm

???
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Enforcing Symmetry Enforcing Symmetry 

• Straighforward extension: 2D state, 2D action

– Large state:  Slow convergence

– Impossible to enforce floor symmetry

• Can we use single policy for all floors?

– DP: ?
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– DP: ?

– RL:  Yes, with state aggregation



DataData--DrivenDriven ExplorationExploration

• Bottom-up cues: 

– Line detection, window detection,...

• How can we exploit them in model fitting?

– Modify ε-greedy exploration strategy
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– Accumulate gradients:

– Use to `propose’ actions:  



EXPERIMENTAL VALIDATIONEXPERIMENTAL VALIDATION
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Randomized ForestRandomized Forest
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Quantitative Validation: Benchmark 2010Quantitative Validation: Benchmark 2010

• 20 images for training 10 images for testing
original MAP
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Potts RL

#generated buildings Time(sec)

[Simon 2011] ~600

RLParsing ~30

[Simon 2011] RL Parsing



Quantitative Validation: Benchmark 2011Quantitative Validation: Benchmark 2011

• Complete Benchmark: 

– 104 annotated images

– Manual parsing
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Mean Std

Topology 0.93 0.09

Appearance 0.81 0.07



Qualitative ValidationQualitative Validation



Robustness to Artificial Noise and OcclusionsRobustness to Artificial Noise and Occlusions

• Salt-and-pepper noise from 0 to 100% (GMM learnt on noise-free image)

• Artificial occlusions added on images
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Robustness to Real Occlusions and IlluminationsRobustness to Real Occlusions and Illuminations

• Natural Occlusions • Cast Shadows

• Night Lights
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CONCLUSIONCONCLUSION

Theoretical contributions

Theoretical contributions

Binary Split Grammars: natural fit for façade modeling

Reinforcement learning: flexible techniques for shape parsing

Enforcing symmetry via state aggregation

Data-driven exploration

Efficient exploration of state-action space
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Efficient exploration of state-action space

State-of-the-art results on many grammars

Practical contributions

Annotated benchmark for façade parsing

Rflib: Open Source Libraries for Randomized Forests

grapes: software for Facade Parsing with Shape Grammar



Q&AQ&A

• Thank you!
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Parsing Algorithm ConvergenceParsing Algorithm Convergence

Artificial Data

Real DataReal Data

6/29/2011 24



ContributionsContributions

Theory

– Binary Shape Grammar(BSG): generic mutually recursive grammars well-suited for 

façade modeling and optimization.

– Reformulation of the Parsing problem in the Reinforcement Learning framework

– Generic  reinforcement learning algorithm for suitable for any BSG

– State aggregation for fast and consistent parsing

– Data-driven exploration to boost the convergence

– State-of-the-art quantitative and qualitative results on many grammars– State-of-the-art quantitative and qualitative results on many grammars

Practice

– Annotated benchmark for façade parsing

– Rflib: Open Source Libraries for Randomized Forests

– grapes: software for Facade Parsing with Shape Grammar
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3 3 classes classes of solutionsof solutions

…

• Dynamic Programming

– At each state s, consider all actions α.

– Obtain merit of state s, backpropagate.

Needs to consider all state-action combinations

• Monte Carlo

– Fix first action, α
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…

– Fix first action, α

– Probabilistically sample subsequent actions.

Needs to consider full episode

• Reinforcement Learning

– At each state pick single action

– Back-propagate locally



Dynamic Programming vs. Reinforcement LearningDynamic Programming vs. Reinforcement Learning
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UserUser--defined Constraintsdefined Constraints
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MDP & Policy functionsMDP & Policy functions

• Policy function adopted by agent:

• Merit function

– Expected reward-to-go if at s we perform α, and then follow π

• Bellman’s recursion:• Bellman’s recursion:

• Bellman’s recursion for optimal policy,                :   
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QQ--Learning AlgorithmLearning Algorithm

Policy 

Evaluation

Sampling (MC)

old

estimate

current

estimate

new                                      

estimate
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Policy 

Improvement



Semi Markov Decision ProcessesSemi Markov Decision Processes
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Other RLOther RL--friendly Techniquesfriendly Techniques
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Gaussian Mixture ModelsGaussian Mixture Models
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HueHue
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