

Metamorphosis III 1967-1968, M.C. Escher

Symmetry-Growing for Detecting Skewed Rotational Symmetry

Hyojin Kim, Minsu Cho, and Kyoung Mu Lee

Department of EECS Seoul National University, Korea

CVPR 11 Workshop :SymmetryDetection from Real World Images20 COLORADO 11

Day and Night

Day and Night, 1938, M.C. Escher

Symmetry-Growing for Skewed Rotational Symmetry Detection

A given image

M.Cho and K.M.Lee, Bilateral Symmetry Detection via Symmetry-Growing, BMVC 2009

Symmetry-Growing for Skewed Rotational Symmetry Detection

Local feature detection

M.Cho and K.M.Lee, Bilateral Symmetry Detection via Symmetry-Growing, BMVC 2009

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry seed extraction

M.Cho and K.M.Lee, Bilateral Symmetry Detection via Symmetry-Growing, BMVC 2009

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry-growing

M.Cho and K.M.Lee, Bilateral Symmetry Detection via Symmetry-Growing, BMVC 2009

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry Verification

M.Cho and K.M.Lee, Bilateral Symmetry Detection via Symmetry-Growing, BMVC 2009

Symmetry-Growing for Skewed Rotational Symmetry Detection

 Our multi-layer growing framework enables overlapping symmetries & robust feature grouping

Symmetry-Growing for Skewed Rotational Symmetry Detection

Locally symmetric parts are inferred by the feature distribution

Symmetry-Growing for Skewed Rotational Symmetry Detection

Comparative examples

Symmetry-Growing for Skewed Rotational Symmetry Detection

Comparative examples

Experimental Results

Our results on images with single symmetry patterns

Symmetry-Growing for Skewed Rotational Symmetry Detection

Detected Symmetries beyond Ground Truth

Examples with a single symmetry pattern

Symmetry-Growing for Skewed Rotational Symmetry Detection

Experimental Results

- Quantitative results
 - Measure: sensitivity & false positive rate

 $S_0 = TP/GT$ $R_{FP} = FP/GT$

• On all the 83 images of PSU Ref. symmetry dataset

Ground truth & other results from M. Park et al.'s CVPR2008

Image Type	Synthetic Single			Synthetic Multiple			
Algorithm	LE06	LHS05	Ours	LE06	LHS05	Ours	
S_0	92%	62%	100%	35%	28%	77%	
R_{FP}	15%	0%	15%	4%	8%	33%	
Image Type		Real Singl	e	R	eal Multip	le	
Image Type Algorithm	LE06	Real Singl LHS05	e Ours	Ro LE06	eal Multip LHS05	le Ours	
Image Type Algorithm S ₀	LE06 84%	Real Singl LHS05 29%	e Ours 94%	Re LE06 43%	eal Multip LHS05 18%	le Ours 68%	

Overall S_0 : 84% (+20% than LE06), R_{FP} : 38% (-4% than LE06)

Symmetry-Growing for Skewed Rotational Symmetry Detection

Development II

Development II 1939, M.C. Escher

Symmetry-Growing for Skewed Rotational Symmetry Detection

A given image

Symmetry-Growing for Skewed Rotational Symmetry Detection

Local feature detection

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry seed extraction

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry-growing

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry Analysis

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry Analysis

Symmetry-Growing for Skewed Rotational Symmetry Detection

Previous Approach

• Global methods: the entire image as a signal

- Not robust to background clutter
- Kellerand.Shkolnisky IEEE Tran.Image Proc. 2006
- Local methods: Grouping symmetric sets of local features

G. Loy and J.O. Eklundh ECCV2006

- efficiently detect local symmetries against background clutters
- But, largely influenced by initial feature detection step

Our Contribution

Robust detection method via symmetry-growing

Our Contribution

Rotational symmetry detection robust to

Symmetry-Growing for Skewed Rotational Symmetry Detection

Step#1: Seed Extraction

Goal: Extract seed matches for symmetric patterns from the given image

Local feature detection

Any of affine-covariant feature detectors

- MSER (Matas et al '02)
- Harris-affine (Mikolajczyk and Schmid '04)
- Edge-laplace (Mikolajczyk and Schmid '04)

•

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetric feature pairs

Mirror matching with normalized feature regions

Region Normalizing Matrices:
$$H_i = R_{\angle o_i}^{-1} \Sigma_i^{\frac{1}{2}}$$

 $H_j = R_{\angle o_j}^{-1} \Sigma_j^{\frac{1}{2}}$

Step#2: Symmetry-Growing

Goal: Grow the obtained symmetry seeds by multi-layer symmetry-growing

Symmetry Cluster Initialization

Initially, each seed constitutes a singleton cluster

Symmetry-Growing for Skewed Rotational Symmetry Detection

Supporter List Initialization

Initialize supporter list as the set of seed matches

Symmetry-Growing for Skewed Rotational Symmetry Detection

Iterative Growing Process

Pick out the best supporter, and expand its cluster

Symmetry-Growing for Skewed Rotational Symmetry Detection

Iterative Growing Process

Pick out the best supporter, and expand its cluster

Symmetry-Growing for Skewed Rotational Symmetry Detection

Expansion

Propagate a neighbor region via a supporter

- Supporter: (R_i, R_j) , $R_j = T_A R_i$
- Take R_i 's nearby region R_{p_i}
- $t_j = T_A t_j$, $R_q = T_A R_p$
- New match generated: (R_p, R_q)
- Expansion layer updated

ComputerVisionLab Seoul National University

Merge

- Merge when two clusters share the center of rotation
 - Only if a expanded cluster has a *similar center* with another cluster.
 - *similar center*: the distance btw the centers < 10% Image width
 - Expansion layer updated.

Symmetry-Growing for Skewed Rotational Symmetry Detection

Rotational Axis?

- Rotational axis (center) estimation
 - Conventional

$$c_{ij} = \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} r\cos(\beta + \gamma) \\ r\sin(\beta + \gamma) \end{bmatrix}$$
$$r^2 = \left(\frac{d}{2}\right)^2 + \left(\frac{d}{2}\tan\beta\right)^2$$
$$\phi_i = \gamma + \beta + \psi$$
$$\phi_j = \gamma + \pi - \beta + \psi$$

G. Loy and J.O. Eklundh *ECCV2006*

Symmetry-Growing for Skewed Rotational Symmetry Detection

Rotational Axis?

Symmetry-Growing for Skewed Rotational Symmetry Detection

Rotational Axis in Skewed cases

Symmetry-Growing for Skewed Rotational Symmetry Detection

Previous solution to Skewed Cases

Local search

- Cornelius and Loy (ICPR06): compute centers of rotation w.r.t all discretized orientations by tilting angles, then find the most likely center by voting.
- Lee and Liu (PAMI10): use phase analysis of Freize expansion plane, then iteratively rectifying the pattern to find most likely aspect ratio.

Comparison in Skewed cases

Finding center

Skew Compensated (Ours)

Symmetry-Growing for Skewed Rotational Symmetry Detection

Comparison in Skewed cases

Finding center

Skew Compensated (Ours)

Symmetry-Growing for Skewed Rotational Symmetry Detection

Comparison in Skewed cases

Symmetry-Growing for Skewed Rotational Symmetry Detection

Step#3: Symmetry Analysis

Goal: Estimate the number of folds and the type of detected symmetry

Final Rotational Axis

Gaussian voting

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry-Growing for Skewed Rotational Symmetry Detection

- Ellipse estimation
 - Shape
 - Size

Grown Cluster

Take min.distance from center to the cluster's convex hull as radius

Adaptively increase or decrease the radius in its length

Cluster fitted for the determined ellipse

Symmetry-Growing for Skewed Rotational Symmetry Detection

- Ellipse estimation
 - Example

Symmetry-Growing for Skewed Rotational Symmetry Detection

Number of folds estimation 0

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry Type Estimation (Dn/Cn)

[Similar to the work of S. Lee and Y. Liu CVPR2008]

Symmetry-Growing for Skewed Rotational Symmetry Detection

Symmetry Type Estimation (Dn/Cn)

Symmetry-Growing for Skewed Rotational Symmetry Detection

Step#4: Symmetry Verification

Goal: Eliminate the unreliable clusters from the grown symmetry clusters

ComputerVisionLab Seoul National University

Symmetry Cluster Verification

- Discard symmetries with trivial # of folds (1 or 2)
- Remove symmetry having high center variance

Symmetry-Growing for Skewed Rotational Symmetry Detection

Experimental Results

- Settings
 - MSER & Hessian affine detector, SIFT descriptor
 - Parameters
 - Solution Radius of latent regions $r_a 1/25 *$ the shorter image axis
 - Cluster size threshold δ_a 0.02
 - \checkmark Center variance threshold $\delta_{\rm b}$ 3 * the dominant cluster's variance
- Test dataset
 - The dataset of S. Lee and Y. Liu's PAMI 2010 work.

Quantitative Evaluation

Used evaluation result in Lee and Liu's PAMI 2010 work

Algorithm	Data Set	TP Center Rate	FP Center Rate	# of Folds	Symmetry Type
Loy and Eklundh ECCV 2006	Synthetic (29 images/48 GT)	31/48 = 65 %	4/48 = 8%	22/49 = 45%	N/A
	Real-Single (58 images/58 GT)	50/58 = 86%	41/58 = 71%	16/64 = 25%	N/A
	Real-Multi (21 images/78 GT)	32/78 = 41%	6/78 = 8%	12/42 = 29%	N/A
	Overall(108 images/184 GT)	113/184 = 61%	51/184 = 28%	50/155 = 32%	N/A
Lee and Liu CVPR 2008	Synthetic (29 images/48 GT)	36/48 = 75 %	0/48 = 0%	42/54 = 78%	44/54 = 81%
	Real-Single (58 images/58 GT)	25/58 = 43%	33/58 = 57%	22/32 = 69%	24/32 = 75%
	Real-Multi (21 images/78 GT)	19/78 = 24%	21/78 = 27%	18/25 = 72%	19/25 = 76%
	Overall(108 images/184 GT)	80/184 = 43%	54/184 = 29%	82/111 = 74%	87/111 = 78%
Lee and Liu PAMI 2010 # 2	Synthetic (29 images/48 GT)	43/48 = 90 %	12/48 = 25%	44/62 = 71%	51/62 = 82%
	Real-Single (58 images/58 GT)	54/58 = 93%	31/58 = 53 %	35/66 = 53%	54/66 = 82%
	Real-Multi (21 images/78 GT)	55/78 = 71%	22/78 = 28%	40/70 = 57%	53/70 = 76%
	Overall(108 images/184 GT)	152/184 = 83%	65/184 = 35%	119/198 = 60%	158/198 = 80%
Ours	Synthetic (29 images/48 GT)	43/48 = 90 %	11/48 = 23%	34/48 = 71%	23/48 = 48%
	Real-Single (58 images/58 GT)	55/58 = 95%	25/58 = 43%	29/58 = 50%	41/58 = 71%
	Real-Multi (21 images/78 GT)	55/78 = 71%	21/78 = 26%	48/78 = 62%	46/67 = 69%
	Overall(108 images/184 GT)	153/184 = 83%	57/184 = 31%	111/184 = 60%	110/173 = 64%

- Low FP rate while comparable or higher TP rate
- Competitive result for #folds detection
- However, poor performance in rotation type estimation

Symmetry-Growing for Skewed Rotational Symmetry Detection

Effect of Skew-robust estimation

Our results on images with single symmetry patterns

Symmetry-Growing for Skewed Rotational Symmetry Detection

ComputerVisionLab Securi National University Comparative examples (1/3)

Symmetry-Growing for Skewed Rotational Symmetry Detection

ComputerVisionLab Secul National University Comparative examples (2/3)

InputLE06LL10Symmetry-Growing for Skewed Rotational Symmetry DetectionHyojin Kim

Hyojin Kim, Minsu Cho, and Kyoung Mu Lee

Our Result

Computer Vision Lab Secul National University Comparative examples (3/3)

Symmetry-Growing for Skewed Rotational Symmetry Detection

Conclusion & Future Work

- Symmetry-Growing
 - overcomes the locality of local feature based methods
 - detects detailed partial symmetries
- Skew-Robust Axis Estimation
 - robust to affine deformation (or others)
 - fast and closed-form solution to skewed symmetry
- Future Work
 - Large deformation in symmetry
 - Effective growing strategy for each symmetry type

Thanks for your attention!

http://cv.snu.ac.kr

Symmetry-Growing for Skewed Rotational Symmetry Detection