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Pean Stats Detect Then Track

Consider a two-stage approach to multi-object tracking
 Detect objects in each frame of a sequence

e Determine interframe correspondences between them to
label objects and discover their trajectories

frame 2325: nmatch 7 nmissed 0 nfalse 0 frame 2375: nmatch 6 nmissed 0 nfalse 0
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Data Association

framel frame?2

(o)
Detections in Detections in
frame 1 — @ cij <@ ~— frame 2

C;; = cost to associate
detection i with detection j
(lower cost is better)




Robert Collins
Penn State

Detections in
frame 1

—

Data Association

framel frame2

 ——— e

i

Detections in
~ frame 2

&
(&)
N
)
’ N
&)
N
&

—_————eeeee e — —

C;; = cost to associate
detection i with detection j
C; = cost to include detection i

in the solution (e.g. negative
detector confidence)
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Multi-frame Data Association

framel frame2 frame3 frame4
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Network Flow Approach

framel frame?2 frame3 frame4

0 & e A e
Pump K units of flow from S to T while minimizing cost.

Note: 1n practice, S and T are connected to all detections,
since a trajectory can start or end in any frame.
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Network Flow Approach

Dummy Source
O<—

o

Frame 1

Dummy Sink

Involves solving for binary variables x on each edge.
Variable 1s 1 1f edge 1s part of the solution, 0 if not.
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renn State Formulated as I1LP
min 2.i Ci%i + ) ijep CigTij

OSZBZS].,OSIEZJ<1

Y, Tj=xi= ) i

8.t.  i:ijcE i:jicE x € FLOWg
D mie=K=) =
i i

T;, Ti; are Iinteger.
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Penn State Formulated as ILP

min > CGiTi t+ ) _iicE CigTij
0<z;<1,0<z;; <1
Z Tij = Tj = Z mﬂ

E wit:K:E Lsi
L 3 7 Y,

Z;, T;j are Integer.

Enforce path
continuity

X & FLOWK

S.t.

K units of flow
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Penn State Formulated as ILP

min > CGiTi t+ ) _iicE CigTij
[O<ﬂ3z§1 O<mza<1]

Tij = Tj = E : L ji

s i: jiCE x € FLOWg
> o= K= e
i 7

Implies each x / [mi’ i 1nteger.]

must be 0 or 1

S.t.
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penn State Formulated as ILP
m)%n 2i GiTi + 2 ijep CijTij

[ngigl,ogmijgl]

Tij =5 = ) i

i:ij€E i:jicE x € FLOWg
D ti=K=) u
: :

[a:i, T;; are integer.]

S.t.

Implies each x
must be 0 or 1 Fun fact: we can drop (relax) this constraint
to get an LP rather than ILP, and still be
guaranteed an integer 0,1 solution.
(due to totally unimodular constraints)
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Penn State Network Flow Approach

Pros:

Efficient solution (guaranteed polynomial time algorithms)
Uses all frames to achieve a global batch solution

Cons:

Cost function is limited to unary and pairwise costs
defined over nodes

Cannot represent higher-order terms, such as pairwise
costs that are defined over (pairs of) edges

This paper: add ability to use pairwise edge costs
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Examples: Pairwise Costs on Edges

Frame 1 Frame 2 Frame 3
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Cost(x;, x;) = ¢q; x; x;

Motivation: Discourage two overlapping detections
from both being part of the solution.
Aka: non-maximum suppression.
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Examples: Pairwise Costs on Edges

Frame 1 Frame 2 Frame 3
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Cost(x;, Xj) = Gy X5 Xjx

Motivation: Encourage smooth trajectories,
e.g. constant velocity motion.
This is not considered in this paper.
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Examples: Pairwise Costs on Edges

Frame 1 Frame 2 Frame 3
O——>0O - - o
O——>CO Head detection
O—>0O OO flow network

O > ) O—>0O Body detectioné
O—0O O—>O flow network
O—>0 |

O—>0O

Motivation: Encourage two compatible detections of
different types to both be part of the solution.
E.g. co-occuring head and body detections
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Approach: Form an 1QP

relabel all vars as z,,...,
Letz= [z, ..., z,/ Y brEM

:\[x]: cee xi} cee xn’}(x]], B xij, R xm”’/
|

n detection vars M-n connection vars

Form the integer quadratic program:

min c'z+z' Qz
Z
S.t. z € FLOW g
z 1nteger

c 1s linear costs (on edges)
Q 1s sparse matrix of quadratic costs (on edge pairs)
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rem e PROBLEM!

Integer Quadratic Programs
are NP-hard 1n general

This paper therefore discusses approximate
solution methods.
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Solution Approach

min c'z+z' Qz
Z

S.t. z € FLOW g
Z_—integel

Relax the integer constraints

Unfortunately, sol’n vars can take values between 0 and 1.

“Fix up” the solution so that all variables are 0 or 1, while
maintaining feasibility (satisty the Flow constraints).
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Pen State Solution Method 1

Modify diagonal terms of Q so that it 1s positive semidefinite
%exv - Zj#i IQ%ld

and adjust linear costs c; to keep same objective function

value
c. = ¢ — QY + Qo Note: 22 = z;

j 17 1

Problem is now convex, and a global solution can be
found efficiently, e.g. by gradient descent or by the
Frank-Wolfe algorithm which iteratively minimizes a
linearization of the convex quadratic problem.
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Penn State Frank-Wolfe Algorithm

Convex function
(quadratic in our cage

f

Tangent plane
approx at current
plution estimate

_onvex domain of
» feasible solutions.

argmin s’ V f(x;)

current estimate x
seD Xp+1 ¢ X + Y(Sk — X) g
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Beau St Frank-Wolfe Algorithm

min c'z+z' Qz
Z

S.t. z € FLOW g
Let current solution estimate be z*
Tangent is (c+ (Q + QT)z"‘)T Z
To find s (= argmin z) we solve the network flow problem

min (c+ (Q+ QT)z"‘)T Z
S.t. z € FLOW g .
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Pen State Solution Method 2

Introduce additional variables u;; = z; z; and constraints in
order to form an equivalent integer linear program.

min c'z+q'u
z € FLOW g
0<u;; <1,Viy &
: _u<3_ Z‘7< < (z,u) €
S.L. Ui S 2, Uz S 24
= “« =% 1 TOEAT(0)

zi +2; < 14 uy;

e Q@ |
U, 1s O 1f either

u is 1 if both

z; or z; are ()
J
z; and z; are 1
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Pen State Solution Method 2

Introduce additional variables u;; = z; z; and constraints in
order to form an equivalent integer linear program.

min c'z+q'u
Z,u
z € FLOW g
0<u;; <1,V €
i - <]_ ‘7< < (z,u) €
S.L. Ui S 2, Uz S 24
J 7 =% LOCAL(Q)
Zi-I-ZjSl-F’u,ij
Z : 1 .

This 1s then relaxed to a linear program (non-integer solns)
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Rounding the Solution

To get back an integer 0,1 solution:
1) round the values -2 bad idea, may not satisfy FLOW

2) Hamming rounding — look for closest solution in FLOW
—> also not great, since that solution may not
have a good objective function value.

3) Frank-Wolfe rounding — one iteration of Frank-Wolfe
algorithm by solving the linear program

. ) , . Thi .
s (c +(Q+ QT)z ) . Bob’s note: This .Q.1s
z not convex, so this is

s.t. z € FLOWg . only a heuristic.
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(c) No co-occurrence term (d) With co-occurrence term

Figure 1: Results of network flow tracking using cost functions with/without pairwise terms.
(a)-(b): a pairwise term that penalizes the overlap between different tracks helps resolving
ambiguous tracks (shown in red) in crowded scenes. (¢)-(d): a pairwise term that encourages the
consistency between two signals (here head detections and body detections) helps eliminating
failures (shown in red) of object detectors.
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Re-detection Error

Re-detection measure. The proposed re-detection mea-
sure evaluates the ability of a tracker to find the correct
location of a given object after At frames. The measure
is inspired by the common evaluation procedure for ob-
ject detection in still images ﬁs(c)a]' and extends it to tracking.
For each pair of detections A; and B;. A; associated to the
same track by a tracker, we check if there exists a ground
truth track that overlaps with A; and B; A; on frames ¢ and
t + At respectively.’ If the answer is negative, the subtrack
(A, Biyat) is labeled as false positive. Otherwise, it is la-
beled as true positive unless there exist multiple subtracks
overlapping with the same ground truth. To avoid multiple
responses, in the latter case only one subtrack is labeled as
true positive while others are declared as false positives.
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Penn State S ome Results
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Some Results

Rell | Pren | GT | MT | PT
NF 679 | 720 | 10 | 4 6
TUD Stadtmitte | NF+pairwise | 59.6 | 89.9 | 10 | 2 8
Milan [20] | 69.1 | 856 | 10 | 4 6
2
1
1

FP | FN | IDs | FM | MOTA | MOTP
305 | 371 | 26 | 26 39.3 59.5
77 | 467 | 15 | 22 51.6 61.6
134 | 457 | 15 | 13 56.2 61.6

870 | 293 | 64 | 66 73.6 72.9
262 | 354 | 56 | 74 85.5 76.2
282 | 148 | 22 | 15 90.3 74.3
693 | 5383 | 291 | 531 | 38.1 60.7
PETS S2L2 NF+pairwise | 606 | 886 | 43 | 6 | 34 807 | 4050 | 244 | 379 | 504 60.6
Milan [20] | 65.1 | 924 | 43 | 11 | 31 549 | 3592 | 167 | 153 | 58.1 59.8

NF 445|922 | 44 | 9 | 15| 20 | 164 | 2428 | 121 | 189 | 38.0 69.3

PETS S2L3 NF+pairwise | 45.5 | 91.2 12 [ 15 | 17 | 155 | 2125 | 44 | 50 40.3 61.2
Milan [20] | 43.0 | 94.2 8 |17 | 19 | 115 | 2493 | 27 | 22 39.8 65.0

44
44

NF 629 | 89.1 | 44 | 18 | 15 | 11 | 295 | 1425 | 289 | 140 | 4738 65.2
44
44

NF 93.7 | 834 | 19 | 17
PETS S2L1 NF+pairwise | 924 | 943 | 19 | 18
Milan [20] | 96.8 | 94.1 | 19 | 18

NF 47.7 | 87.6 | 43 i |37

= WO OO OOOE

PETS S1L1-2 | NF+pairwise | 68.9 | 92.0 20 (16 | 8 [ 230 | 1198 | 35 | 74 62.0 62.1
Milan [20] | 649 | 924 21 (12| 11 [ 169 | 1349 | 22 | 19 60.0 61.9

NF 313 | 874 | 42 | 4 | 15| 23 | 208 | 3501 | 101 | 243 | 23.7 57.9
PETS S1L2-1 | NF+pairwise | 37.9 | 896 | 42 | 4 | 20 | 18 | 223 | 3141 | 67 | 122 | 32.2 55.0
Milan [20] | 309 | 983 | 42 | 2 | 19 | 21 | 27 (3494 | 42 | 34 29.6 58.8

Table 1: Table summarizing results over PETS and TUD sequences. Bold indicates best value for each column for each
dataset. Abbreviations are as follows GT - ground truth tracks. MT - Mostly tracked. PT - partially tracked. ML - mostly
lost. FP - false positives. FN - false negatives. IDs - ID swaps. FM - fragmentation.



