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Detect Then Track 

Consider a two-stage approach to multi-object tracking 

•  Detect objects in each frame of a sequence 

•  Determine interframe correspondences between them to 
     label objects and discover their trajectories 
      

matching 
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Data Association 
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cij = cost to associate  
detection i with detection j 
(lower cost is better) 
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cij = cost to associate  
detection i with detection j 

ci cj 

ci = cost to include detection i 
  in the solution (e.g. negative  
  detector confidence) 
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Multi-frame Data Association 
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Network Flow Approach 
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Pump K units of flow from S to T while minimizing cost. 
Note: in practice, S and T are connected to all detections, 
since a trajectory can start or end in any frame. 
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Network Flow Approach 

Involves solving for binary variables x on each edge.  
Variable is 1 if edge is part of the solution, 0 if not. 
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Formulated as ILP 
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Formulated as ILP 

Enforce path 
continuity 

K units of flow 
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Formulated as ILP 

Implies each x  
must be 0 or 1 
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Formulated as ILP 

Implies each x  
must be 0 or 1 
 

Fun fact: we can drop (relax) this constraint  
to get an LP rather than ILP, and still be 
guaranteed an integer 0,1 solution. 
(due to totally unimodular constraints) 
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Pros:  
     Efficient solution (guaranteed polynomial time algorithms) 
     Uses all frames to achieve a global batch solution 

Cons: 
      Cost function is limited to unary and pairwise costs 

       defined over nodes 
      Cannot represent higher-order terms, such as pairwise  

       costs that are defined over (pairs of) edges  
 

       
       This paper: add ability to use pairwise edge costs 
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Examples: Pairwise Costs on Edges 

Frame 1 Frame 2 Frame 3 

xi 

xj 

Cost(xi , xj ) =  qij xi xj 
  

Motivation: Discourage two overlapping detections  
from both being part of the solution. 
Aka: non-maximum suppression. 
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Examples: Pairwise Costs on Edges 

Frame 1 Frame 2 Frame 3 

xij 

xjk 

Cost(xij , xjk ) =  qijk xij xjk 
  

Motivation: Encourage smooth trajectories, 
e.g. constant velocity motion. 
This is not considered in this paper. 

xi 
xj 

xk 
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Examples: Pairwise Costs on Edges 
Frame 1 Frame 2 Frame 3 

xh
i 

xb
j 

Cost(xh
i , xb

j ) =  - qij xh
i xb

j 
  Motivation: Encourage two compatible detections of 

different types to both be part of the solution. 
E.g. co-occuring head and body detections 

Head detection 
flow network 

Body detection 
flow network 



Penn State 
Robert Collins 

Approach: Form an IQP 

Let z = [z1, ... , zM] 
          = [x1, ... , xi , ... , xn,  x11 , ... , xij , ... , xmn] 

n detection vars M-n connection vars 

c is linear costs (on edges) 
Q is sparse matrix of quadratic costs (on edge pairs) 

  relabel all vars as z1,...,zM 

  Form the integer quadratic program: 



Penn State 
Robert Collins 

PROBLEM! 

Integer Quadratic Programs  
are NP-hard in general 

Ruh roh! 

This paper therefore discusses approximate 
solution methods. 
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Solution Approach 

Relax the integer constraints 
Unfortunately, sol’n vars can take values between 0 and 1. 
“Fix up” the solution so that all variables are 0 or 1, while 
      maintaining feasibility (satisfy the Flow constraints). 



Penn State 
Robert Collins 

Solution Method 1 

Modify diagonal terms of Q so that it is positive semidefinite 
 
 
and adjust linear costs ci to keep same objective function 
value   

 ci      =  
new Note: 

Problem is now convex, and a global solution can be 
found efficiently, e.g. by gradient descent or by the 
Frank-Wolfe algorithm which iteratively minimizes a 
linearization of the convex quadratic problem. 
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Frank-Wolfe Algorithm 
Convex function 
(quadratic in our case) 

Tangent plane 
approx at current 
solution estimate 

Convex domain of  
feasible solutions.  

current estimate xk 

argmin 
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Frank-Wolfe Algorithm 

Let current solution estimate be z* 
 
Tangent is 
 
To find s (= argmin z) we solve the network flow problem 
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Solution Method 2 

uij is 1 if both  
zi  and zj  are 1 

Introduce additional variables uij = zi zj  and constraints in 
order to form an equivalent integer linear program. 
 

uij is 0 if either  
zi  or zj  are 0 
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Solution Method 2 
Introduce additional variables uij = zi zj  and constraints in 
order to form an equivalent integer linear program. 
 

This is then relaxed to a linear program (non-integer solns) 
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Rounding the Solution 
To get back an integer 0,1 solution: 
 
1) round the values   !  bad idea, may not satisfy FLOW 
 
2) Hamming rounding – look for closest solution in FLOW 
              ! also not great, since that solution may not  
                   have a good objective function value.  
 
3) Frank-Wolfe rounding – one iteration of Frank-Wolfe 
            algorithm by solving the linear program 

Bob’s note: This Q is  
not convex, so this is 
only a heuristic. 
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Figure 1: Results of network flow tracking using cost functions with/without pairwise terms.  
(a)-(b): a pairwise term that penalizes the overlap between different tracks helps resolving 
ambiguous tracks (shown in red) in crowded scenes. (c)-(d): a pairwise term that encourages the 
consistency between two signals (here head detections and body detections) helps eliminating 
failures (shown in red) of object detectors.  
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Re-detection Error 

Pascal VOC 
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Some Results 
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