On Pairwise Costs for Network Flow Multi-Object Tracking

Visesh Chari, Simon Lacoste-Julien, Ivan Laptev, and Josef Sivic CVPR 2015

Detect Then Track

Consider a two-stage approach to multi-object tracking

- Detect objects in each frame of a sequence
- Determine interframe correspondences between them to label objects and discover their trajectories

Data Association

c_{ij} = cost to associate detection i with detection j (lower cost is better)

Data Association

Multi-frame Data Association

Network Flow Approach

Pump K units of flow from S to T while minimizing cost. Note: in practice, S and T are connected to all detections, since a trajectory can start or end in any frame.

Network Flow Approach

Dummy Source

Involves solving for binary variables *x* on each edge. Variable is 1 if edge is part of the solution, 0 if not.

Formulated as ILP

min х

$$\min_{\mathbf{x}} \qquad \sum_{i} c_{i} x_{i} + \sum_{ij \in E} c_{ij} x_{ij} \\ 0 \le x_{i} \le 1, \ 0 \le x_{ij} \le 1 \\ \sum_{i:ij \in E} x_{ij} = x_{j} = \sum_{i:ji \in E} x_{ji} \\ \sum_{i:ij \in E} x_{it} = K = \sum_{i} x_{si} \\ i = K = \sum_{i} x_{si}$$

 x_i, x_{ij} are integer.

Formulated as ILP

 $\min_{\mathbf{x}}$

$$\sum_i c_i x_i + \sum_{ij \in E} c_{ij} x_{ij}$$

s.t.

$$0 \le x_i \le 1, \ 0 \le x_{ij} \le 1$$

$$\sum_{i:ij \in E} x_{ij} = x_j = \sum_{i:ji \in E} x_{ji}$$

$$x \in FLOW_K$$

$$\sum_i x_{it} = K = \sum_i x_{si}$$
K units of flow
$$x_i, x_{ij} \text{ are integer.}$$

Formulated as ILP

$$\min_{\mathbf{x}} \sum_{i} c_{i} x_{i} + \sum_{ij \in E} c_{ij} x_{ij}$$

$$0 \le x_{i} \le 1, \ 0 \le x_{ij} \le 1$$

$$\sum_{i:ij \in E} x_{ij} = x_{j} = \sum_{i:ji \in E} x_{ji}$$

$$x \in FLOW_{K}$$

$$\sum_{i} x_{it} = K = \sum_{i} x_{si}$$

$$x_{i}, x_{ij} \text{ are integer.}$$

$$must be 0 \text{ or } 1$$

Formulated as ILP

$$\begin{array}{ll} \min_{\mathbf{x}} & \sum_{i} c_{i} x_{i} + \sum_{ij \in E} c_{ij} x_{ij} \\ 0 \leq x_{i} \leq 1, \ 0 \leq x_{ij} \leq 1 \\ & \sum_{i:ij \in E} x_{ij} = x_{j} = \sum_{i:ji \in E} x_{ji} \\ & \sum_{i:ij \in E} x_{it} = K = \sum_{i} x_{si} \end{array} \right\} \mathbf{x} \in \mathrm{FLOW}_{K}$$

$$\begin{array}{ll} \mathrm{Implies \ each \ x} \\ \mathrm{must \ be \ 0 \ or \ 1} \end{array} \qquad \begin{array}{ll} x_{i}, \ x_{ij} & \mathrm{are \quad integer.} \\ & \mathrm{Fun \ fact: \ we \ can \ drop \ (relax) \ this \ constraint \ to \ get \ an \ LP \ rather \ than \ LP, \ and \ still \ be \ guaranteed \ an \ integer \ 0,1 \ solution.} \end{array}$$

(due to totally unimodular constraints)

Network Flow Approach

Pros:

Efficient solution (guaranteed polynomial time algorithms) Uses all frames to achieve a global batch solution

Cons:

Cost function is limited to unary and pairwise costs defined over nodes

Cannot represent higher-order terms, such as pairwise costs that are defined over (pairs of) edges

This paper: add ability to use pairwise edge costs

Penn State Examples: Pairwise Costs on Edges

 $\operatorname{Cost}(x_i, x_j) = q_{ij} x_i x_j$

Motivation: Discourage two overlapping detections from both being part of the solution. Aka: **non-maximum suppression**.

Penn State Examples: Pairwise Costs on Edges

 $\operatorname{Cost}(x_{ij}, x_{jk}) = q_{ijk} x_{ij} x_{jk}$

Motivation: Encourage smooth trajectories, e.g. constant velocity motion. **This is not considered in this paper.**

Penn State Examples: Pairwise Costs on Edges

 $\operatorname{Cost}(x_i^h, x_j^b) = -q_{ij} x_i^h x_j^b$

Motivation: Encourage two compatible detections of different types to both be part of the solution. E.g. co-occuring head and body detections

Approach: Form an IQP

PROBLEM!

Integer Quadratic Programs are **NP-hard** in general

This paper therefore discusses approximate solution methods.

Solution Approach

Relax the integer constraintsUnfortunately, sol'n vars can take values between 0 and 1."Fix up" the solution so that all variables are 0 or 1, while maintaining feasibility (satisfy the Flow constraints).

Solution Method 1

Modify diagonal terms of Q so that it is positive semidefinite $Q_{ii}^{\text{new}} = \sum_{j \neq i} |Q_{ij}^{\text{old}}|$

and adjust linear costs c_i to keep same objective function value $c^{\text{new}} = c = 0^{\text{new}} + 0^{\text{old}}$ Note: $z^2 = z$

$$c_i^{\text{new}} = c_i - Q_{ii}^{\text{new}} + Q_{ii}^{\text{old}}$$
 Note: $z_i^2 = z_i$

Problem is now convex, and a global solution can be found efficiently, e.g. by gradient descent or by the Frank-Wolfe algorithm which iteratively minimizes a linearization of the convex quadratic problem.

Frank-Wolfe Algorithm

Frank-Wolfe Algorithm

$$\min_{\mathbf{z}} \quad \mathbf{c}^{\top}\mathbf{z} + \mathbf{z}^{\top}\mathbf{Q}\mathbf{z} \\ \text{s.t.} \quad \mathbf{z} \in \text{FLOW}_{K}$$

Let current solution estimate be z^*

Tangent is
$$(\mathbf{c} + (\mathbf{Q} + \mathbf{Q}^{\top})\mathbf{z}^*)^{\top}\mathbf{z}$$

To find s (= argmin z) we solve the network flow problem

$$\min_{\mathbf{z}} \quad \left(\mathbf{c} + (\mathbf{Q} + \mathbf{Q}^{\top})\mathbf{z}^*\right)^{\top} \mathbf{z}$$

s.t.
$$\mathbf{z} \in \text{FLOW}_K.$$

Solution Method 2

Introduce additional variables $u_{ij} = z_i z_j$ and constraints in order to form an equivalent integer linear program.

$$\begin{array}{ll} \min \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z} \in \mathrm{FLOW}_K \\ 0 \leq u_{ij} \leq 1, \ \forall ij \in \mathcal{Q} \\ \mathrm{s.t.} \\ u_{ij} \leq z_i \,, \, u_{ij} \leq z_j \\ z_i + z_j \leq 1 + u_{ij} \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z}_i \text{ or } z_j \text{ are } 0 \\ \end{array} \right\} \begin{array}{l} (\mathbf{z}, \mathbf{u}) \in \\ \mathrm{LOCAL}(\mathcal{Q}) \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z}_i \text{ or } z_j \text{ are } 1 \end{array}$$

Solution Method 2

Introduce additional variables $u_{ij} = z_i z_j$ and constraints in order to form an equivalent integer linear program.

$$\begin{array}{ll} \min \\ \mathbf{z}, \mathbf{u} \\ \mathbf{z} \in \mathrm{FLOW}_K \\ 0 \leq u_{ij} \leq 1, \ \forall ij \in \mathcal{Q} \\ u_{ij} \leq z_i, \ u_{ij} \leq z_j \\ z_i + z_j \leq 1 + u_{ij} \end{array} \begin{array}{l} (\mathbf{z}, \mathbf{u}) \in \\ \mathrm{LOCAL}(\mathcal{Q}) \\ \mathbf{z}, \mathbf{u} \\ \end{array}$$

This is then relaxed to a linear program (non-integer solns)

Rounding the Solution

To get back an integer 0,1 solution:

- 1) round the values \rightarrow bad idea, may not satisfy FLOW
- 2) Hamming rounding look for closest solution in FLOW
 → also not great, since that solution may not have a good objective function value.
- 3) Frank-Wolfe rounding one iteration of Frank-Wolfe algorithm by solving the linear program

$$\min_{\mathbf{z}} \quad \left(\mathbf{c} + (\mathbf{Q} + \mathbf{Q}^{\top})\mathbf{z}^{*}\right)^{\top} \mathbf{z}$$

s.t. $\mathbf{z} \in FLOW_K$.

Bob's note: This Q is not convex, so this is only a heuristic.

Some Results

(a) No overlap term

(b) With overlap term

(c) No co-occurrence term

(d) With co-occurrence term

Figure 1: Results of network flow tracking using cost functions with/without pairwise terms. (a)-(b): a pairwise term that penalizes the overlap between different tracks helps resolving ambiguous tracks (shown in red) in crowded scenes. (c)-(d): a pairwise term that encourages the consistency between two signals (here head detections and body detections) helps eliminating failures (shown in red) of object detectors.

Re-detection Error

Re-detection measure. The proposed re-detection measure evaluates the ability of a tracker to find the correct location of a given object after Δt frames. The measure is inspired by the common evaluation procedure for ob-ject detection in still images [10] and extends it to tracking. For each pair of detections A_t and $B_{t+\Delta t}$ associated to the same track by a tracker, we check if there exists a ground truth track that overlaps with A_t and $B_{t+\Delta t}$ on frames t and $t + \Delta t$ respectively.⁷ If the answer is negative, the subtrack $(A_t, B_{t+\Delta t})$ is labeled as false positive. Otherwise, it is labeled as true positive unless there exist multiple subtracks overlapping with the same ground truth. To avoid multiple responses, in the latter case only one subtrack is labeled as true positive while others are declared as false positives.

Some Results

Some Results

		Rcll	Prcn	GT	MT	PT	ML	FP	FN	IDs	FM	MOTA	MOTP
TUD Stadtmitte	NF	67.9	72.0	10	4	6	0	305	371	26	26	39.3	59.5
	NF+pairwise	59.6	89.9	10	2	8	0	77	467	15	22	51.6	61.6
	Milan [20]	69.1	85.6	10	4	6	0	134	457	15	13	56.2	61.6
PETS S2L1	NF	93.7	83.4	19	17	2	0	870	293	64	66	73.6	72.9
	NF+pairwise	92.4	94.3	19	18	1	0	262	354	56	74	85.5	76.2
	Milan [20]	96.8	94.1	19	18	1	0	282	148	22	15	90.3	74.3
PETS S2L2	NF	47.7	87.6	43	1	37	5	693	5383	291	531	38.1	60.7
	NF+pairwise	60.6	88.6	43	6	34	3	807	4050	244	379	50.4	60.6
	Milan [20]	65.1	92.4	43	11	31	1	549	3592	167	153	58.1	59.8
PETS S2L3	NF	44.5	92.2	44	9	15	20	164	2428	121	189	38.0	69.3
	NF+pairwise	45.5	91.2	44	12	15	17	155	2125	44	50	40.3	61.2
	Milan [20]	43.0	94.2	44	8	17	19	115	2493	27	22	39.8	65.0
PETS S1L1-2	NF	62.9	89.1	44	18	15	11	295	1425	289	140	47.8	65.2
	NF+pairwise	68.9	92.0	44	20	16	8	230	1198	35	74	62.0	62.1
	Milan [20]	64.9	92.4	44	21	12	11	169	1349	22	19	60.0	61.9
PETS S1L2-1	NF	31.3	87.4	42	4	15	23	208	3501	101	243	23.7	57.9
	NF+pairwise	37.9	89.6	42	4	20	18	223	3141	67	122	32.2	55.0
	Milan [20]	30.9	98.3	42	2	19	21	27	3494	42	34	29.6	58.8

Table 1: Table summarizing results over PETS and TUD sequences. Bold indicates best value for each column for each dataset. Abbreviations are as follows GT - ground truth tracks. MT - Mostly tracked. PT - partially tracked. ML - mostly lost. FP - false positives. FN - false negatives. IDs - ID swaps. FM - fragmentation.