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ABSTRACT
Automatic understanding of photo composition is a valuable
technology in multiple areas including digital photography,
multimedia advertising, entertainment, and image retrieval.
In this paper, we propose a method to model geometrically
the compositional effects of linear perspective. Comparing
with existing methods which have focused on basic rules
of design such as simplicity, visual balance, golden ratio,
and the rule of thirds, our new quantitative model is more
comprehensive whenever perspective is relevant. We first
develop a new hierarchical segmentation algorithm that in-
tegrates classic photometric cues with a new geometric cue
inspired by perspective geometry. We then show how these
cues can be used directly to detect the dominant vanish-
ing point in an image without extracting any line segments,
a technique with implications for multimedia applications
beyond this work. Finally, we demonstrate an interesting
application of the proposed method for providing on-site
composition feedback through an image retrieval system.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis

General Terms
Algorithms; Experimentation; Human Factors

Keywords
Perspective Effect; Composition Modeling; Image Segmen-
tation; Vanishing Point Detection; Photo Retrieval

1. INTRODUCTION
With the rapid advancement of digital camera and mo-

bile imaging technologies, we have witnessed a phenomenal
increase of both professional and amateur photographs in
the past decade. Large-scale social media companies, e.g.,
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Flickr, Instagram, and Pinterest, enable their users to share
photos with people all around the world. As millions of new
photos are added daily on the Internet, the demand increases
for creating automatic systems to manage, assess, and edit
such content. Consequently, photo composition understand-
ing has emerged as a new research area, attracting attention
of the multimedia community lately.

In photography, composition is the art of positioning or
organization of objects and visual elements (e.g., color, tex-
ture, shape, tone, motion, depth) within an photo. Princi-
ples of organization include balance, contrast, Gestalt per-
ception and unity, geometry, rhythm, perspective, illumina-
tion, and viewing path. Automated understanding of photo
composition has been shown to benefit a number of appli-
cations such as summarization of photo collections [25] and
assessment of image aesthetics [26]. It can also be used to
render feedback to the photographer on the photo aesthet-
ics [36, 35], and suggest improvements to the image com-
position through image re-targeting [21, 4, 7]. Moreover,
the capability to understand compositions has broad impli-
cations beyond photography. For example, in multimedia
advertising, designers often need to come up with interest-
ing compositions to attract the attention or to influence the
emotions of the viewers. Also, composition analysis can po-
tentially be used to assist movie directors by providing feed-
back on the scene composition.

In the literature, most work on image composition under-
standing has focused on design rules such as the simplicity,
visual balance, golden ratio, the rule of thirds, and the use
of diagonal lines. These rules are mainly concerned with the
2D rendering of objects or simple ways of dividing the image
frame. They are by no means exhaustive for capturing the
wide variations in photographic composition.

The Use of Perspective Effect in Photography. Per-
spective effect is one of the most commonly used techniques
in photo composition. As illustrated by the examples in
Figure 1, during photographic creation, experienced pho-
tographers often make use of the linear perspective effect to
emphasize the sense of 3D space in a 2D photo. It not only
reveals the appearance of objects in space and their relation-
ships to each other, but also tells us our angle of perception
and our position as an observer. In this regard, perspective
is credited with recognizing the viewer as a specific unique
individual in a distinct place with a point of view [18].

According to the perspective camera geometry, all par-
allel lines in 3D converge to a single point, the vanishing
point, in the image. However, only the vanishing point ly-
ing within or near the image frame and associated with the



Figure 1: The use of perspective effects in photog-
raphy. Top two rows: natural landscape. Bottom
two rows: urban scenes.

dominant structures of the scene (e.g., grounds, large walls,
bridges) convey a strong impression of 3D space or depth to
the viewers. Figure 2(a) shows some examples. We regard
such a vanishing point as the dominant vanishing point of
the particular image. By placing the dominant vanishing
point at different image locations and choosing how each
composition region in the image relates to this point, an ex-
perienced photographer could produce various image com-
positions that convey different messages or impressions to
the viewers.

Modeling Perspective Effects Automatically. Based
on the above discussion, we argue that, in order to obtain a
comprehensive understanding of composition, it is necessary
to develop automatic systems to examine the perspective
effects in the photos. To this end, we propose to partition
an image into photometrically and geometrically consistent
regions according to the dominant vanishing point. In our
work, we assume that each geometric region can be roughly
modeled by a flat surface, or a plane. As shown in Fig-
ure 2(c), such a partition naturally provides us with a novel
holistic yet compact representation of the 3D scene geom-
etry that respects the perspective effects of the scene the
image captured in, and allows us to derive a notion of rela-
tive depth and scale for the objects. Nevertheless, obtaining
such a representation is a challenging problem for the fol-
lowing reasons.

First, given any two adjacent geometric regions in an im-
age, there may not be a distinguishable boundary in terms
of photometric cues (e.g., color, texture) so that they can
be separated. For example, the walls and the ceiling in the
second photo of Figure 2 share the same building material.
Because existing segmentation algorithms primarily depend
on the photometric cues to determine the distance between
regions, they are often unable to separate these regions from
each other (see Figure 2(b) for examples). To resolve this
issue, we propose a novel hierarchical image segmentation
algorithm that leverages significant geometric information
about the dominant vanishing point in the image. Specif-
ically, we compute a geometric distance between any two
adjacent regions based on the similarity of the angles of the
two regions in a polar coordinate system, with the dominant

(a) (b) (c)

Figure 2: Geometric image segmentation. (a) The
original image with the dominant vanishing point
detected by our method (shown as a yellow round
dot). (b) Region segmentation map produced us-
ing a state-of-the-art method. (c) Geometric image
segmentation map produced by our method.

vanishing point being the pole. By combining the geometric
cues with conventional photometric cues, our method is able
to preserve essential geometric regions in the image.

Second, detecting the dominant vanishing point from an
image itself is a nontrivial task. Typical vanishing point de-
tection methods assume the presence of a large number of
strong edges in the image. However, for many photos of nat-
ural outdoor scenes, such as the image of an arbitrary road,
there may not be adequate clearly-delineated edges that con-
verge to the vanishing point. In such cases, the detected
vanishing points are often unreliable and sensitive to image
noise. To overcome this difficulty, we observe that while it
may be hard to detect the local edges in these images, it is
possible to directly infer the location of the vanishing point
by aggregating the aforementioned photometric and geomet-
ric cues over the entire image (Figures 2 and 7). Based on
this observation, we develop a novel vanishing point detec-
tion method which does not rely on the existence of strong
edges, hence works better for natural images.

Application to On-Site Composition Feedback. Since
our region-based model captures rich information about the
photo composition, it may benefit many composition-based
applications. As an illustrative example, we apply it to an
image retrieval application which aims to provide amateur
users with on-site feedback about the composition of their
photos, in the same spirit as Yao et al. [35]. In particular,
given a query image taken by the user, the system retrieves
exemplar photos with similar compositions from a collection
of photos taken by experienced photographers. These exem-
plar photos can serve as an informative guide for the users
to achieve good compositions in their photos.

Our Contributions. In summary, we have made the fol-
lowing contributions:



• Composition modeling: We model the composition of
an image by examining the perspective effects and par-
titioning the image into photometrically and geomet-
rically consistent regions using our novel hierarchical
image segmentation algorithm.

• Dominant vanishing point detection: By aggregating
the photometric and geometric cues used in our seg-
mentation algorithm, we develop an effective method
to detect the dominant vanishing point in an arbitrary
image.

• On-site composition feedback: We demonstrate that
our region-based model can be used to provide am-
ateur users with on-site composition feedback by re-
trieving images with similar composition as the query
image from a collection of photos taken by experienced
photographers.

Nevertheless, our framework does not attempt to model
all potential compositions in the photos, especially when
there is a lack of strong perspectivity. While in this paper we
focus on the use of perspective geometry in the photography,
we point out that there are many works which study other
important aspects of composition, including the semantic
features (e.g., buildings, trees, roads) [14, 15, 9, 10]. It
would be ideal to integrate all these features in order to gain
a deeper understanding of the image composition, but such
a comprehensive work is beyond the scope of this paper.

2. RELATED WORK
Standard composition rules such as the rule of thirds,

golden ratio and low depth of field have played important
roles in early works on image aesthetics assessment [5, 22].
Obrador et al. [26] later showed that by using only the com-
position features, one can achieve image aesthetic classifica-
tion results that are comparable to the state-of-the-art. Re-
cently, these rules have also been used to predict high-level
attributes for image interestingness classification [6], recom-
mend suitable positions and poses in the scene for portrait
photography [36], and develop both automatic and inter-
active cropping and retargeting tools for image enhance-
ment [21, 4, 7]. In addition, Yao et al. [35] proposed a
composition-sensitive image retrieval method which classi-
fies images into horizontal, vertical, diagonal, textured, and
centered categories, and uses the classification result to re-
trieve exemplar images that have similar composition and
visual characteristics as the query image. However, as we
mentioned before, these features or categories are all about
2D rendering, with 3D impression not taken into account.

Meanwhile, various methods have been proposed to ex-
tract 3D scene structures from a single image. The GIST
descriptor [27] is among the first attempts to characterize
the global arrangement of geometric structures using simple
image features such as color, texture and gradients. Follow-
ing this seminal work, a large number of supervised machine
learning methods have been developed to infer approximate
3D structures or depth maps from the image using care-
fully designed models [14, 15, 9, 31, 24] or grammars [10,
11]. In addition, models tailored for specific scenarios have
been studied, such as indoor scenes [19, 12, 13] and urban
scenes [3]. However, these works all make strong assump-
tions on the structure of the scene, hence the types of scene
they can handle in practice are limited. Despite the above

efforts, obtaining a good estimation of perspective in an ar-
bitrary image remains an open problem.

Typical vanishing point detection algorithms are based on
clustering edges in the image according to their orientations.
Kosecka and Zhang proposed an Expectation Maximization
(EM) approach to iteratively estimate the vanishing points
and update the membership of all edges [17]. Recently, a
non-iterative method is developed to simultaneously detect
multiple vanishing points in an image [33]. These methods
assume that a large number of line segments are available
for each cluster. To reduce the uncertainty in the detection
results, a unified framework has been proposed to jointly op-
timize the detected line segments and vanishing points [34].
For images of scenes that lack clear line segments or bound-
aries, specifically the unstructured roads, texture orientation
cues of all the pixels are aggregated to detect the vanishing
points [29, 16]. But it is unclear how these methods can be
extended to general images.

Image segmentation algorithms commonly operate on low-
level image features such as color, edge, texture and the po-
sition of patches [32, 8, 20, 2, 23]. But it was shown in [30]
that given an image, images sharing the same spatial com-
posites can help with the unsupervised segmentation task.

3. GEOMETRIC IMAGE SEGMENTATION
Since our segmentation method follows the classic hierar-

chical segmentation framework, we give an overview of the
framework and some of the state-of-the-art results in Sec-
tion 3.1. In Section 3.2, we introduce our geometric distance
measure for hierarchical image segmentation, assuming the
location of the dominant vanishing point is known. The pro-
posed geometric cue is combined with traditional photomet-
ric cues in Section 3.3 to obtain a holistic representation for
composition modeling. In Section 3.4, we further show how
the proposed distance measure, when aggregated over the
entire image, can be used to detect the dominant vanishing
point in an image.

3.1 Overview of Hierarchical Segmentation
Generally speaking, the segmentation method can be con-

sidered as a greedy graph-based region merging algorithm.
Given an over-segmentation of the image, we define a graph
G = (R, E ,W (E)), where each node corresponds to one re-
gion, and R = {R1, R2, . . .} is the set of all nodes. Further,
E = {eij} is the set of all edges connecting adjacent regions,
and the weights W (E) are a measure of dissimilarity be-
tween regions. The algorithm proceeds by sorting the edges
by their weights and iteratively merging the most similar re-
gions until certain stopping criterion is met. Each iteration
consists of three steps:

1. Select the edge with minimum weight:

e∗ = arg min
eij∈E

W (eij).

2. Let R1, R2 ∈ R be the regions linked by e∗. Set R ←
R \ {R1, R2}

⋃
{R1

⋃
R2} and update the edge set E

accordingly.

3. Stop if the desired number of regions K is reached,
or the minimum edge weight is above a threshold δ.
Otherwise, update weights W (E) and repeat.



(a) (b) (c)

Figure 3: Hierarchical image segmentation using
photometric cues only. (a) The original image.
(b) The ultrametric contour map (UCM) generated
by [2]. (c) The segmentation result obtained by
thresholding the UCM at a fixed scale.

Various measures have been proposed to determine the
distance between two regions, such as the difference be-
tween the intensity variance across the boundary and the
variance within each region [8], and the difference in cod-
ing lengths [23]. Recently, Arbelaez et al. proposed a novel
scheme for contour detection which integrates global pho-
tometric information into the grouping process via spec-
tral clustering [2]. They have shown that this globaliza-
tion scheme can help identify contours which are too weak
to be detected using local cues. The detected contours are
then converted into a set of initial regions (i.e., an over-
segmentation) for hierarchical image segmentation. We show
an example of the segmentation result obtained by [2] in Fig-
ure 3. In particular, in Figure 3(b), we visualize the entire
hierarchy of regions on an real-valued image called the ul-
trametric contour map (UCM) [1], where each boundary is
weighted by the dissimilarity level at which it disappears. In
Figure 3(c), we further show the regions obtained by thresh-
olding the UCM at a fixed scale. It is clear that because the
weights of the boundaries are computed only based on the
photometric cues in [2], different geometric regions could be
merged at early stages in the hierarchical segmentation pro-
cess if they have similar appearances.

Motivated by this problem, we take the over-segmentation
result generated by [2] (i.e., by thresholding the UCM at a
small scale 0.05) as the input to our algorithm, and develop
a new distance measure between regions which takes both
photometric and geometric information into consideration.

3.2 Geometric Distance Measure
We assume that a major portion of the scene can be ap-

proximated by a collection of 3D planes parallel to a domi-
nant direction in the scene. The background, e.g., the sky,
can be treated as a plane at infinity. The dominant direc-
tion is characterized by a set of parallel lines in the 3D space
which, when projected to the image, converge to the dom-
inant vanishing point. Consequently, given the location of
the dominant vanishing point, our goal is to segment an im-
age so that each region can be roughly modeled by one plane
in the scene. To achieve this goal, we need to formulate a
dissimilarity measure which yields small values if the pair of
adjacent regions belong to the same plane, and large values
otherwise.

We note that any two planes that are parallel to the dom-
inant direction must intersect at a line which passes through
the dominant vanishing point in the image. Intuitively, this
observation provides us with a natural way to identify ad-
jacent regions that could potentially lie on different planes:

If the boundary between two regions is parallel to the dom-
inant direction (hence passes through the dominant vanish-
ing point), these two regions are likely to lie on different
planes. However, in the real world, many objects are not
completely planar, hence there may not be a clear straight
line that passes through the dominant vanishing point be-
tween them. As an example, if we focus our attention on the
three adjacent regions R1, R2 and R3 in Figure 4, we notice
that R1 and R3 belong to the vertical wall and R2 belongs to
the ceiling. However, the boundaries between the pair (R1,
R2) and the pair (R1, R3) both lie on the same (vertical)
line. As a result, it is impossible to differentiate these two
pairs based on only the orientation of these boundaries.

To tackle this problem, we propose to look at the angle
of each region from the dominant vanishing point in a polar
coordinate system, instead of the orientation of each bound-
ary pixel. Here, the angle of a region is represented by the
distribution of angles of all the pixels in this region. Math-
ematically, let the dominant vanishing point P be the pole
of the polar coordinate system, for each region Ri, we com-
pute the histogram of the angle value θ(X) for all the pixels
X ∈ Ri, as illustrated in Figure 4.

Let ci(θ) be the number of the pixels in Ri that fall into
the θ-th bin. We use 360 bins in our experiments. We say
that one region Ri dominates another region Rj at angle θ if
ci(θ) ≥ cj(θ). Our observation is that if one region Ri always
dominates another region Rj at almost all angles, these two
regions likely belong to the same plane. Meanwhile, if one
region has larger number of pixels at some angles whereas
the other region has larger number of pixels at some other
angles, these two regions likely lie on different planes. This
observation reflects the fact a plane converging to the van-
ishing point often divides along the direction perpendicular
to the dominant direction because of architectural or natural
structures, e.g., columns and trees. Because perpendicular
separation of regions has little effect on the polar angles, the
histograms of angles tend to overlap substantially.

Based on this observation, we define the geometric dis-
tance between any two regions Ri and Rj as follows:

Wg(eij) = 1−

max

(∑
θ min(ci(θ), cj(θ))

|Ri|
,

∑
θ min(ci(θ), cj(θ))

|Rj |

)
,

where |Ri| and |Rj | are the total numbers of pixels in re-
gions Ri and Rj , respectively. For example, as illustrated
in Figure 4(c), R1 dominates R3 at all angles and hence we
have Wg(e1,3) = 0. Meanwhile, R1 and R2 dominate each
other at different angles and their distributions have very
small overlap. As a result, their geometric distance is large:
Wg(e1,2) = 0.95. In Figure 4(d), we show all the bound-
aries weighted by our geometric distance. As expected, the
boundaries between two regions which lie on different planes
tend to have higher weights than other ones. This suggests
that, by comparing the angle distributions of two adjacent
regions, we can obtain a more robust estimate of the bound-
ary orientations than directly examining the orientations of
boundary pixels.

Here, a reader may wonder why we don’t simply normalize
the histograms and use popular metrics like KL divergence
or the earth mover’s distance to compare two regions. While
our intuition is indeed to compare the distributions of an-
gles of two regions, we have found in practice that comput-
ing the normalized histograms could be highly unstable for
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Figure 4: Illustration of the the computation of the geometric distance. (a) The over-segmentation map with
the polar coordinate system. (b) Three adjacent regions from the image. (c) The histograms of angle values
for the three regions. (d) The boundary map weighted by the geometric distance between adjacent regions.

small regions, especially at the early stages of the iterative
merging process. Thus, in this paper we propose an alter-
native geometric distance measure which avoids normalizing
the histograms, and favors large regions during the process.

3.3 Combining Photometric and Geometric
Cues

While our geometric distance measure is designed to sepa-
rate different geometric structures, i.e., planes, in the scene,
the traditional photometric cues often provide additional in-
formation about the composition of images. Because differ-
ent geometric structures in the scene often have different
colors or texture, the photometric boundaries often coincide
with the geometric boundaries. On the other hand, in prac-
tice it may not always be possible to model all the structures
in the scene by a set of planes parallel to the dominant di-
rection. Recognizing the importance of such structures to
the composition of the image due to their visual saliency,
it is highly desirable to integrate the photometric and geo-
metric cues in our segmentation framework to better model
composition. In our work, we combine the two cues by a
linear combination:

W (eij) = λWg(eij) + (1− λ)Wp(eij), (1)

where Wp(eij) is the photometric distance between adjacent
regions, and can be obtained from any conventional hier-
archical image segmentation method. Here we adopt the
contour map generated by [2].

In Figure 5, we show the segmentation results of an image
using our method with different choices of λ and a fixed num-
ber of regions K. Note that when λ = 1, only the geometric
cues are used for segmentation; when λ = 0, the result is
identical to that obtained by the conventional method [2]. It
can be seen that using the geometric cues alone (λ = 1), we
are able to identify most of the structures in the scene. Some
of the boundaries between them may not be accurate enough
(e.g., the boundary between the bridge on the left and the
sky area). However, when λ = 0, the algorithm tends to
merge regions from different structures early in the process
if they have similar colors. By combining the two cues (e.g.,
λ is 0.4 or 0.6), we are able to eliminate the aforementioned
problems and obtain satisfactory result. Additional results
are provided in Figures 6. Our method typically achieves
the best performance when λ is in the range of [0.4, 0.6]. We
fix λ to 0.6 for the remaining experiments.

λ = 1 λ = 0.8 λ = 0.6

λ = 0.4 λ = 0.2 λ = 0

Figure 5: Image segmentation results by integrat-
ing both photometric and geometric cues. Different
values of weighting parameter λ have been used.

3.4 Enhancing Vanishing Point Detection
In the previous subsection we demonstrated how the knowl-

edge about the dominant vanishing point in the scene can
considerably improve the segmentation results. However,
detecting the vanishing point in an arbitrary image itself is
a challenging problem. Most existing methods assume that
(1) region boundaries in the image provide important pho-
tometric cues about the location of the dominant vanishing
point, and (2) these cues can be well captured by a large
number of line segments in the image. In practice, we no-
tice that while the first assumption is generally true, the
second one often fails to hold, especially for images of natu-
ral outdoor scenes. This is illustrated in Figure 7: although
human can easily infer the location of the dominant van-
ishing point from the orientations of the aggregated region
boundaries, existing line segment detection algorithms may
fail to identify these boundaries. For this reason, any van-
ishing point detection method relying on the detected line
segments would also fail.

To alleviate this issue, we propose to use our geometric
distance measure Wg(eij) to obtain a more robust estima-
tion of the orientation of each boundary and subsequently
develop a simple exhaustive search scheme to detect the



Figure 6: Additional segmentation results. For each
original image, we show the results in the order of
λ =1, 0.8, 0.6, 0.4, 0.2 and 0.

dominant vanishing point. In particular, given a hypoth-
esis of the dominant vanishing point location, we can obtain
a set of boundaries which align well with the converging di-
rections in the image by computing Wg(eij) for each pair of
adjacent regions. These boundaries then form a “consensus
set”. We compute a score for the hypothesis by summing up
the strengths of the boundaries in the consensus set (Fig-
ure 7(c) and (d)). Finally, we keep the hypothesis with the
highest score as the location of the dominant vanishing point
(Figure 7(e)). Our algorithm can be summarized as follows:

1. Divide the image by an m× n uniform grid mesh.

2. For each vertex Pk on the grid, we compute the ge-
ometric distance Wg(eij) for all the boundaries in an
over-segmentation of the image. Then, the consensus

score for Pk is defined as: f(Pk) =
∑
eij∈E

Wp(eij)Wg(eij).

3. Select the point with the highest score as the detected
dominant vanishing point: P ∗ = arg max f(Pk).

Here, the size of the grid may be chosen based on the desired
precision for the location of the vanishing point. In practice,

(a) (b)

(c) (d) (e)

Figure 7: Enhancing vanishing point detection. (a)
Original image. (b) Line segment detected. (c) and
(d) The weighted boundary map for two different
hypotheses of the dominant vanishing point location.
(e) The consensus score for all vertices on the grid.

our algorithm can find the optimal location in about one
minute on a 50×33 grid on a single CPU. We also note that
the time may be reduced using a coarse-to-fine procedure.

In addition, we assume that the dominant vanishing point
lies in the image frame because, as we noted before, only the
vanishing point which lies within or near the frame conveys
a strong sense of 3D space to the viewer. But our method
can be easily extended to detect vanishing points outside the
frame using a larger mesh grid.

4. QUANTITATIVE EVALUATIONS
We systematically evaluate the proposed geometric image

segmentation algorithm and vanishing point detection algo-
rithm in Section 4.1 and 4.2, respectively.

4.1 Evaluation on Image Segmentation
In this section, we compare the performance of our method

with the state-of-the-art image segmentation method, gPb-
owt-ucm [2]. For this experiment, we assume known domi-
nant vanishing point locations. We emphasize that our goal
here is not to compete with [2] as a generic image segmenta-
tion algorithm, but to demonstrate that information about
the vanishing point (i.e., the geometric cue), if properly har-
nessed, can empower us to get better segmentation results.

To quantitatively evaluate the methods, we use three pop-
ular metrics to compare the result obtained by each algo-
rithm with the manually-labeled segmentation: Rand index
(RI), variation of information (VOI) and segmentation cov-
ering (SC). First, the RI metric measures the probability
that an arbitrary pair of samples have the same label in two
partitions. The range of RI metric is [0, 1], higher values in-
dicating greater similarity between two partitions. Second,
the VOI metric measures the average condition entropy of
two clustering results, which essentially measures the extent
to which one clustering can explain the other. The VOI met-
ric is non-negative, with lower values indicating greater sim-
ilarity. Finally, the SC metric measures the overlap between
the region pairs in two partitions. The range of SC metric
is [0, 1], higher values indicating greater similarity. We refer
interested readers to [2] for more details about these metrics.
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(a) Rand Index (b) Segmentation Covering (c) Variation of Information

Figure 8: Segmentation benchmarks. K is the number of regions. Top rows show some example test images
with the manually labeled segmentation maps.

For this experiment, we manually labeled 200 images down-
loaded from flickr.com. These images cover a variety of in-
door and outdoor scenes and each has a dominant vanishing
point. During the labeling process, our focus is on identi-
fying all the regions that differ from their neighbors either
in their geometric structures or photometric properties. We
show some images with the hand-labeled segmentation maps
in Figure 8.

Figure 8 also shows the benchmark results of both meth-
ods. Our method significantly outperforms gPb-owt-ucm on
all metrics. This is consistent with the example results in
Figures 5 and 6, suggesting that our method is advantageous
in segmenting the geometric structures in the scene.

4.2 Evaluation on Vanishing Point Detection
Next, we compare our vanishing point detection method

with two state-of-the-art methods proposed by Tardif [33]
and Tretiak et al. [34], respectively. As discussed earlier,
both methods rely on the line segments to generate vanishing
point candidates. Then, a non-iterative scheme similar to
the popular RANSAC technique is developed in [33] to group
the line segments into several clusters, each corresponding
to one vanishing point. Using the vanishing points detected
by [33] as an initialization, [34] further propose a non-linear
optimization framework to jointly refine the extracted line
segments and vanishing points.

In this experiment, we use 400 images downloaded from
flickr.com whose dominant vanishing points lie within the
image frame. All images are scaled to size 500×330 or 330×
500. To make the comparison fair, for [33] and [34] we only
keep the vanishing point with the largest support set among
all hypotheses that also lie within the image frame. We
consider a detection successful if the distance between the
detected vanishing point and the manually labeled ground
truth is smaller than certain threshold t, and plot the success
rates of all methods w.r.t. the threshold t in Figure 9. As one
can see, our method outperforms existing methods as long
as the threshold is not too small (t ≥ 10 pixels), justifying
its effectiveness for detecting the dominant vanishing point
in arbitrary images. When t is small, our method does not
perform well because its precision in locating the vanishing
point is limited by the size of the grid mesh. Nevertheless,
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Figure 9: Comparison of vanishing point detection
algorithms.

this issue can be alleviated using a denser grid mesh at the
cost of more computational time. Also, we note that while
the joint optimization scheme proposed in [34] can recover
weak line segments and vanishing points for urban scenes,
its improvement over [33] is quite small in our case.

5. ON-SITE COMPOSITION FEEDBACK
TO PHOTOGRAPHERS

The segmentation results obtained by our method cap-
ture rich information about the composition of images, hence
can be used to facilitate various composition-driven appli-
cations. We now discuss one such application, which aims
at providing amateur users with on-site feedback about the
composition of their photos.

As we know, good composition highlights the object of
interest in a photo and attract the viewer’s attention imme-
diately. However, it typically requires years of practice and
training for a photographer to master all the necessary com-
position skills. An effective way for an amateur or an enthu-
siast to learn photography is through observing masterpieces
and building models about photography. Nowadays, thanks
to increased popularity of online photo sharing services such
as flickr.com and photo.net, one can easily access mil-
lions of photos taken by people all around the world. Such
resource naturally provides us with opportunities to develop
new and more efficient ways for the beginners to learn the
composition skills.



Specifically, given a photo taken by the user, we propose to
find photos with similar compositions in a collection of pho-
tos taken by experienced or accomplished photographers.
These photos are rendered as feedback to the user. The
user can then examine these exemplar photos and consider
re-composing his/her own photo accordingly. Yao et al. pi-
oneered this direction in [35], but the types of composition
studied there are limited to a few categories which are pre-
defined based on simple 2D rules.

In this paper, we take a completely different approach and
develop a similarity measure to compare the composition of
two images based on their geometric image segmentation
maps. Our observation is that, experienced photographers
often are able to achieve different compositions by placing
the dominant vanishing point at different image locations,
and then choosing how the main structures of the scene are
related to it in the captured image. In addition, while the
difference in the dominant vanishing point locations can be
simply computed as the Euclidean distance between them,
our geometric segmentation result offers a natural represen-
tation of the arrangement of structures with respect to the
dominant vanishing point. Specifically, given two images Ii
and Ij , let Pi and Pj be the locations of dominant vanishing
points and Si and Sj be the segmentation results generated
by our method for these two images, respectively, we define
the similarity measure as follows:1

D(Ii, Ij) = F (Si, Sj) + α‖Pi − Pj‖, (2)

where F (Si, Sj) is a metric to compare two segmentation
maps. We adopt the Rand index [28] for its effectiveness. In
addition, α controls the relative impact of the two terms in
Eq. (2). We empirically set α = 0.5.

To obtain a dataset of photos which make good use of the
perspective effect, we collect 3,728 images from flickr.com

by querying the keyword “vanishing point”. When collecting
the photos, we use the sorting criterion of “interestingness”
provided by flickr.com, so that the retrieved photos are
likely to be well-composed and taken by experienced or ac-
complished photographers. Each photo is then scaled to size
500× 330 or 330× 500. To evaluate the effectiveness of our
similarity measure (Eq. (2)), we manually label the domi-
nant vanishing point and then apply our geometric image
segmentation algorithm (with the proposed distance mea-
sure W (eij) and the stopping criteria δ = 0.55) to obtain a
segmentation for each image.

In Figure 10, we show the retrieved images for various
query images. The results clearly show that the proposed
measure is not only able to find images with similar domi-
nant vanishing point locations, but also effectively captures
how each region in the image is related to the vanishing
point. For example, the images in the 4th, 6th, and 7th
rows of Figure 10 all have similar vanishing point locations
(around the image center), but very different scene structure
compositions, hence convey very different impressions to the
viewer.

6. DISCUSSION AND FUTURE WORK
We have developed a new method for modeling visual

composition by analyzing the perspective effects and seg-
menting the image based on photometric and geometric cues.

1Here, we assume the two images have the same size, after
rescaling.

Figure 11: Composition modeling with complex per-
spective geometry. First row: photos with multi-
ple dominant vanishing points. Second row: photos
with foreground objects.

The method has been demonstrated for its effectiveness in
detecting the dominant vanishing point from an arbitrary
scene. Among a variety of potential applications, we have il-
lustrated how our model can be used to build a composition-
sensitive image retrieval system capable of providing on-site
feedback to photographers.

Our work opens up several future directions. First, we
may extend our geometric image segmentation and vanish-
ing point detection algorithms to images with two or more
dominant vanishing points, often found in man-made envi-
ronments (Figure 11, first row). Here, our goal is to detect
all the dominant vanishing points in an image and to group
the regions according to the corresponding vanishing points.

Second, one challenge in composition recognition for real-
world photos is the presence of large foreground objects (Fig-
ure 11, second row). They typically correspond to regions
which are not associated with any vanishing point in the
image. We will analyze the composition of these images by
first separating the foreground objects from the background.
We note that, while our analysis of the perspective geome-
try provides valuable information about the 3D space, many
popular composition rules studied in early work, such as the
simplicity of the scene, golden ratio, rule of thirds, and vi-
sual balance have focused on the arrangement of objects in
the 2D image plane. We believe that combining the strength
of both approaches will enable us to obtain a deeper under-
standing of the composition of these images.

Finally, besides providing on-site feedback to photogra-
phers, the proposed method has many potential real-world
applications. For example, it can be used to retrieve images
with similar composition in a large-scale image database.
Here, a major challenge is to assess the relevance of the per-
spective effect in the overall composition of a photo. Possi-
ble solutions include using the metadata from photo-sharing
websites, and developing new automatic methods (e.g., via
the detection of strong vanishing points). As another exam-
ple, the proposed method can be employed to further sum-
marize the query results. When a query results in a large
number of images that have similar levels of visual similarity
or aesthetic quality, the query results can be structured as
a tree with levels of refinement in terms of composition by
grouping the images using a hierarchical clustering scheme.
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Figure 10: Composition-sensitive image retrieval results. Each row shows a query image (first image from
the left) and the top-6 or top-8 ranked images retrieved.


