Partial Least Squares Regression
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* Learning about PLS is more difficult than it should be,
partly because papers describing it span areas of
chemistry, economics, medicine and statistics, with
little agreement on terminology.

 There are also two related but different methods
called PLS, one due to Wold and Martens, and the
other due to Bookstein (BPLS).

* Within the Wold family, two different algorithms
PLS1 and PLS2 have arisen to handle single versus
multiple dependent variables.



What is PLS Regression?

Basically, we want to do linear regression Y = X B

This is ill-conditioned when the features X have
“colinearities” (feature matrix has less than full rank)

Project the features into a new set of features in a
lower-dimensional space. Each such “latent feature’
is a linear combination of the original features.
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Do regression using the latent variables

What distinguishes PLS from other methods (like
principal components regression) is how the
projection is done.



PCR vs PLS

* In particular, PCR chooses basis vectors of its low
dimensional projection to describe as much as
possible the variation in the data X.

* However nothing guarantees that the principal
components, which “explain” X optimally, will be
relevant for the prediction of Y.

e Solution: incorporate information from Y when
choosing the projection. We thus choose a
projection that describes as well as possible the
covariation of data X and labels Y.



PLS1 versus PLS2

PLS1 — only considers a single class label at a time, so
we have a single vector of dependent variablesy

PLS2 — we have multiple class labels, so there is a
whole matrix Y of dependent variables

Possible motivations for PLS2: performing multiclass
classification, using one set of latent features. Y class
labels may not be independent. May just want to do
some exploratory data analysis.

However, may get better classification results if you
just apply PLS1 separately to each column of Y.



Background

Consider linear regression of a dependent variable y (say class label) given a
set of independent variables (features) x1, x2, ..., xm.

\/: le)*’ 2_)(2+ “'+L\~\X\-\+&

Here, the bi are the unknown regression coefficients, and e is a residual
error that we will want to make as small as possible.

Rewrite slightly
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Background

Now consider this as a matrix equation
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We want a least-squares solution for the unknown regression parameters
b such that we minimize the sum of squared errors of the residuals in e
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To use this for predicting class labels y given a new set of feature
measurements Xnew, we can now do

. A Important note: we have assumed that vectory,
= X \O and each column of X, have been centered by
7 e subtracting their mean values. We may also
want to further normalize the columns xi by
dividing by their standard deviations (to make
scaling comparable across different features).



Background

[
/ w\lnlM(%S e ﬁl

\ =
\D - LX/KB X 7 55Q aeLsdva\s

Problem: this least-squares solution is ill-conditioned if X’ X does not
have full rank. This can happen when there are strong correlations
(“colinearities”) between subsets of features that cause them to only
span a lower-dimensional subspace. X’ X is certainly not full rank when
the number of features m exceeds the number of training samples n.

Solution: project each measurement into a lower-dimensional subspace
spanned by the data. We can think of this as forming a smaller set of
features, each being the linear combination of the original set of features.
These new features are also called “latent” variables.



PCR — Principal Components Regression

Basic idea: Use SVD to form new latent vectors (principal components)
associated with a low-rank approximation of X

First apply SVD to X
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where U'U =V’V =1 , and D is a diagonal matrix of singular values in

descending order of magnitude d1 >=d2 >= ... >=dm

Columns of T: “principal components”,
Columns of V: “loadings”

factor scores”, “latent variables”.



PCR — Principal Components Regression

Form a low-rank approximation of X by keeping just the first k<m principal
components (the ones associated with the k largest singular values).
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We now can consider a regression problem in a lower-dimensional feature
space by using the latent variables as our new features
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Note that the columns of T are orthogonal to each other (recall T = U D), thus
(Tk’ Tk) is a diagonal matrix (values on the diagonal are the squares of the
singular values), so it is really easy to solve this new regression problem.



PCR — Principal Components Regression

To use use the solution to this reduced dimension regression problem to
solve the original problem of predicting class labels y given a new set of
feature measurements Xnew, we can now do
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Since T = X P, and P(=V) is an orthonormal matrix that performs a change of
basis,, we can think of X Pk as the rotation and projection of old features X
(in m-dim space) into new latent variables T (in k-dim space)

Key point: after projecting into latent variables, there is no reason we
have to restrict ourselves to linear regression! We instead could just use
these new features and do a nonlinear regression using SVMs, quadratic
discriminant functions, or whatever we want.



D i g re S S i O n (but will become relevant)

Power method algorithm, for computing eigenvalues, eigenvectors.

$find first k largest eigenvalues and eigenvectors
Evec = [];
Eval = [];
for j=1l:k
[dummy,c] = max(max(abs(A))); $find max norm column c
tmp = A(:,C);
u = tmp / sqrt(dot(tmp,tmp));
$iterate (should use a convergence test)

for i=1:20

u=A4A" * u;

u =u / sqrt(dot(u,u)); $unit vector
end
lam = u' * A * u; $compute eigenvalue
Evec(:,]j) = $store eigenvalue/vector
Eval(j) =
A = A - lam*u*u'; $deflation

end



D i g re S S i O n (but will become relevant)

Power-method-like algorithm for computing X =T P’ (basically, SVD).

$find first k largest principal components vectors

Tmat = [];
Pmat = [];
for j=1:3
[dummy,c] = max(max(abs(X))); %find max norm column c
t = X(:,C);
$¥iterate (should use a convergence test)
for 1i=1:20
p =X *t;
p =p / sqrt(dot(p,p)); $right singular vector vj of UDV'
t =X * p; $principal component (dj * uj) of UDV'
end
Tmat(:,]) = t; ¥store principal component and "loading"
Pmat(:,J) = p;
X=X - t*p"; ¥deflation

end



Working Towards PLS

Recall the decomposition X = UDV'=TP’ and that T = X P rotates and
projects columns of X into a set of orthogonal columns in T, the so-called
principal components or latent variables.

First, note that vectors in P (=V) are eigenvectors of X’ X
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Now, if we have centered out feature measurements (columns of X) by
subtracting the mean of each column, X' X has a specific interpretation
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Working Towards PLS

Thus, the first k principal components maximize the ability to describe the
covariance or spread of the data in X, that is Cov(X,X) = X’ X. For example,
the first component t1 = X p1 maximizes cov(t1,t1) = p1 X' X p1.

Problem: rotation and data reduction to explain the principal variation in X is

not guaranteed to yield latent features that are good for predicting vy.

Solution, and the basic idea behind PLS: project to latent variables that
maximize the covariation between Xand y, namely Cov(X,y).

So for the first latent vector, search for a vector t = X w such that we
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NIPALS Algorithm (PLS1)
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this gives first latent variables t and u... apply again to get next ones, and so on
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PLS2

PLS2 — we have multiple class labels, so there is a whole matrix Y of dependent
variables and matrix B of regression coefficients.

N XY n\ XM\ WM XV nNWXV_

{Y;" « Lol e

L

We could treat this as multiple, separate PLS1 problems (and that might even be
best from a classification accuracy standpoint), but if you insist on simultaneous

decomposition, we can project both X and Y into latent variable spaces T and U,

such that T and U are coupled, and chosen to maximize cov(X,Y)=XY .

S /
X=7F
\< O R / Then we can learn a regression function
between the T and U latent variables, using
o linear regression or SVM or ...
V=T C
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PLS2 Algorithm
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this gives first latent variables t and u... apply again to get next ones, and so on.
Note, if Y has only 1 column, this reduces to PLS1 (q becomes 1, u becomes y)



Comparisons

Overview (as related to SVD) Latent variables
PLS — W, is left singular vector of X'y t=Xw,
Deflate X and y
I
— W, is left singular vector of XY t=Xw
PLS2 q; is right singular vector of XY u=Xgq;
Deﬂalte XandY
dX'Y)=WDQ’
Bookstein svd(X'Y) “ T=XW

extracts multiple left/right singular

vectors simultaneously Uu=YQ
no deflation (since no iteration)
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Abstract

Significant research has been devored to detecting people
in images and videos. In this paper we describe a human de-
tection method thar augments widely used edge-based fea-
tures with rexture and color information, providing us with
a much richer descriptor set. This augmentarion results
in an extremely high-dimensional feature space (more than
170,000 dimensions). In such high-dimensional spaces,
classical machine learning algorithms such as SVMs are
nearly intractable with respect 1o wraining. Furthermore,
the number of training samples is much smaller than the
dimensionality of the feature space, by at least an order
of magnitude. Finally, the extraction of features from a

densely sampled grid structure leads 1o a high degree of

multicollinearity. To circumvent these dara characteristics,
we employ Partial Least Squares (PLS) analysis, an effi-
cient dimensionality reduction technique, one which pre-
serves significant discriminative information, 1o project the
dara onto a much lower dimensional subspace (20 dimen-
sions, reduced from the original 170,000). Our human de-
rection system, employving PLS analysis over the enriched
descriptor set, is shown ro outperform state-of-the-art tech-
nigues on three varied datasets including the popular INRIA
pedestrian daraser, the low-resolution gray-scale Daim-
lerChrysier pedestrian dataser, and the ETHZ pedestrian

harwood@umiacs.umd.edu, lad@cs.umd.edu

Figure 1. Image demonstrating the performance of our system in
a complex scene. The image (689 x 480 pixels) is scanned at 10
scales to search for humans of multiple sizes. We achieve mini-
mal false alarms even though the number of detection windows 1s
44,996 (best visualized in color).

ods consists of a generative process where detected parts
of the human body are combined according to a prior hu-
man model. The second class of methods considers purely
statistical analysis that combine a set of low-level features
within a detection window to classify the window as con-
taining a human or not. The method presented in this paper
belongs to the latter category.



Schwartz et.al. Approach

Sliding window approach to pedestrian detection

Compute a feature vector within each window and try to
classify it as human or non-human

Feature vector consists of features extracted from overlapping
blocks within a candidate detection window

Features computed in each block are
— HOG descriptors (e.g. Dalaal and Triggs)

— texture features computed from co-occurrence matrices

— color frequency (number of times each color channel contained the
highest gradient magnitude when computing HOG features)

Full feature vector has more than 170,000 dimensions!



Schwartz et.al. Approach

* Use PLS1 to project the 170,000 dimensional feature space
down to 20 dimensions

* Train a Quadratic Discriminant Analysis (QDA) classifier in the
20 dimensional latent space. Noted you could also use SVM,
but since PLS gives good separability between classes, it is
possible to use the simpler (and less expensive) classifier.

 Compared performance with other classifiers using 10-fold
cross-validation.



PCA versus PLS

First two dimensions for PCA First two dimensions for PLS
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(a) PCA - first two dimensions (b) PLS - first two dimensions

PLS gives better class separability for the first 2 dimensions
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PCA versus PLS

Detection Error Tradeoff Detection Error Tradeoff

107 10 10

lalse postive per wndow (FFFW) false postive per wndow (FPPW)

(c) PCA - cross-validation (d) PLS - cross-validation

PCA worked best with a latent space of 180 dimensions
PLS worked best with a latent space of 20 dimensions



Tuning

Detecticn Error Tradeoff

false positives per window (FPPW)
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Using HOG + Texture + Color Frequency

together did better than individually

FPPW vs. Miss Rate

0.5
& QDA
O LDA
02k Logistic Regression| |
Lingar SVM
Kemel SVM
0.1
0.05p
0029
T~
0.01% e
—_—_ ‘-3*\
10° 10° 10° 10

false positives per window (FPPW)

Using Kernel SVM or QDA did best
for classification after PLS reduction



It is computational worth it...

# samples | PLS + QDA SVM
200 23.63 131.72
600 62.62 | 733.63
1000 97.38 | 1693.50
1400 135.81 | 2947.51
1800 174.57 | 4254.63
2200 213.93 -
11370 813.03 .

Table 1. Time, in seconds, to train SVM and PLS + QDA models.
The number of features per sample is 170,820. The training time
increases with an increase in the number of training samples.



Concern with Runtime

To speed up classification during run time, they came up with a two-stage
approach where they first do classification using a smaller set of features
from a subset of most discriminative blocks (determined offline). Windows

that pass that test are then analyzed with the full set of features.

Detection Error Tradeoff
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this graph shows the 2-stage approach does not degrade overall performance



Some sample results

(a) 640 x 480 (41,528 det. windows) (b) 1632 x 1224 (389,350 det. windows)
SR

Remember to show the video

(c) 1600 x 1200 (373,725 det. windows)



Performance Fvaluation

Example True Detections

Evaluations

INRIA Pedestrian Dataset

DaimlerChrysler Dataset

Detection Error Tradeoff
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Evaluations

ETHZ Pedestrian Dataset

recall

Seq. 21 (599 frames, 5193 annotations)

Seq. #2 (450 frames, 2359 annotations)

Seq. #3 (354 frames, 1828 annotations)
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Analysis

plotting the set of weight
vectors w (recall these are
the left singular vectors of

X’ y) gives some indication
about what features/location

contribute most to each
latent variable.

Weight Vectors

HOG

Co-occurrence features 10
(H channel)
0.75
Co- occurrence features 05
_ i 0.25
.,
Co-occurrence features I ‘ ,
0.0

(V channel)

Color frequency ' .
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This paper introduces a new tool for functional
neuroimage analysis: partial least squares (PLS). It is
unique as amultivariate method in its choice of empha-
sis for analysis, that being the covariance between
brain images and exogenous blocks representing ei-
ther the experiment design or some behavioral mea-

sure. What emerges are spatial patterns of brain activity

that represent the optimal association between the
images and either of the blocks. This process differs
substantially from other multivariate methods in that
rather than attempting to predict the individual val-
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ment design or some behavioral measure. Its greatest
strength is the flexible treatment of images in the
context of simultaneous prediction of those images by
their causes (e.g., aspects of the task design} and
prediction by those images of their effects (e.g.. mea-
sures of behavior). Partial least squares extracts cer-
tain features that are inaccessible by other methods,
while overlooking some complexities for which other
methods may be more suited.

Most of the contemporary techniques for analysis of
functional neuroimaging data are variations of univari-
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Bookstein Approach

Original variables X are the intensity valuesin a 3D
volumetric PET scan, concatenated into a big vector

Want to explore covariation of locations in the brain
with different tasks Y

Uses PLS (the Bookstein version!) to extract the
“singular images” (weight vectors wi) from XY

Then plot these with respect to 3D brain coordinates



Positive Saliences

sagittol

coronaol

tronsverss

Subject Score%

Negative Saliences

coronal

sogittal

72

—-104

VPC VAC

C VAL

o

transverse
2 n
" | .
=
14 = i .
" 1 - - -
H - - . -
0~ | . []
. - R
. . .
4 | !
b -
.2 - "
.3 n
T 1 I L] T
Enc1 Match1 Rec1 Enc2 Match2 Rec2

Condition

In summary. the PLS activation analysis shows that
the dominant (first) pattern distinguished recognition
of faces from encoding and face matching. The singular
image incorporates positive saliences for posterior and
ventral anterior cingulate cogtices, anterior temporal
cortices, and right hippocan?&us. and negative salien-
ces for right prefrontal and dorsal anterior cingulate,
ventral occipital and cerebellum, and thalamus. The
scores are equal for encoding and face matching, sug-
gesting that the areas identified in the first SI do not
differentiate encoding and matching. The second SI



Positive Saliences Negative Saliences

sagittal - coronal sogittol coronal
. " H T 4 M B s T . 2

......

64 .
tronsverse transverse
2 differentiate encoding and matching. The second SI
. . distinguishes encoding from matching with positive
@ 1: . . . ] . saliences for fiorsf'll occipita! cortex and negative for
= . H - - ventral-anterior right parahippocampal gyrus and left
o : . - . . ) prefrontal cortex. Scores in the recognition condition
2 0- . a " " 1 were most similar to those from encoding. In view of the
S ] [ . - . similarity in scores for both memory conditions on the
oy 4 i 1 = second SI, it is possible that these regions represent
3 general memory operations. There have been sugges-
D - tions that recognition of previously presented informa-
tion requires reactivation of some of the same regions
-3 " engaged in the initial encoding episode (Tulving and
— . . - — Thompson, 1973: Nyberg et al., 1995). The PLS results
Enc1  Match1 Rec1 Enc2 Match2 Rec2 are consistent with this possibility.
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