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Cavaet 

•  Learning about PLS is more difficult than it should be, 
partly because papers describing it span areas of 
chemistry, economics, medicine and statistics, with 
little agreement on terminology. 

•  There are also two related but different methods 
called PLS, one due to Wold and Martens, and the 
other due to Bookstein (BPLS). 

•  Within the Wold family, two different algorithms 
PLS1 and PLS2 have arisen to handle single versus 
multiple dependent variables. 



What is PLS Regression? 

•  Basically, we want to do linear regression Y = X B 
•  This is ill‐conditioned when the features X have 
“colinearities” (feature matrix has less than full rank) 

•  Project the features into a new set of features in a 
lower‐dimensional space.  Each such “latent feature” 
is a linear combination of the original features. 

•  Do regression using the latent variables 
•  What distinguishes PLS from other methods (like 
principal components regression) is how the 
projection is done. 



PCR vs PLS 

•  In particular, PCR chooses basis vectors of its low 
dimensional projection to describe as much as 
possible the variation in the data X.  

•  However nothing guarantees that the principal 
components, which “explain” X optimally, will be 
relevant for the prediction of Y. 

•  Solution: incorporate information from Y when 
choosing the projection.  We thus choose a 
projection that describes as well as possible the 
covariation of data X and labels Y.  



PLS1 versus PLS2 

•  PLS1 – only considers a single class label at a time, so 
we have a single vector of dependent variables y 

•  PLS2 – we have multiple class labels, so there is a 
whole matrix Y of dependent variables 

•  Possible motivations for PLS2: performing multiclass 
classification, using one set of latent features. Y class 
labels may not be independent.  May just want to do 
some exploratory data analysis.  

•  However, may get better classification results if you 
just apply PLS1 separately to each column of Y. 



Background 
Consider linear regression of a dependent variable y (say class label) given a  
set of independent variables (features) x1, x2, ..., xm.   

Here, the bi are the unknown regression coefficients, and e is a residual 
error that we will want to make as small as possible. 

and consider n training samples 

Rewrite slightly 



Background 
Now consider this as a matrix equation 

We want a least-squares solution for the unknown regression parameters 
b such that we minimize the sum of squared errors of the residuals in e 

To use this for predicting class labels y given a new set of feature 
measurements Xnew, we can now do 

Important note: we have assumed that vector y, 
and each column of X, have been centered by 
subtracting their mean values.  We may also 
want to further normalize the columns xi by 
dividing by their standard deviations (to make 
scaling comparable across different features). 



Background 

Problem: this least-squares solution is ill-conditioned if X’ X does not 
have full rank.  This can happen when there are strong correlations 
(“colinearities”) between subsets of features that cause them to only 
span a lower-dimensional subspace.  X’ X is certainly not full rank when 
the number of features m exceeds the number of training samples n. 

Solution: project each measurement into a lower-dimensional subspace 
spanned by the data.  We can think of this as forming a smaller set of 
features, each being the linear combination of the original set of features.  
These new features are also called “latent” variables.  



PCR – Principal Components Regression 
Basic idea: Use SVD to form new latent vectors (principal components)  
associated with a low-rank approximation of X 

First apply SVD to X 

where U’U = V’V = I  , and D is a diagonal matrix of singular values in 
descending order of magnitude d1 >= d2 >= ... >= dm 

Columns of T: “principal components”, “factor scores”, “latent variables”. 
Columns of V: “loadings” 



PCR – Principal Components Regression 
Form a low-rank approximation of X by keeping just the first k<m principal 
components (the ones associated with the k largest singular values). 

Note that the columns of T are orthogonal to each other (recall T = U D), thus 
(Tk’ Tk) is a diagonal matrix (values on the diagonal are the squares of the 
singular values), so it is really easy to solve this new regression problem. 

We now can consider a regression problem in a lower-dimensional feature 
space by using the latent variables as our new features 



PCR – Principal Components Regression 

Since T = X P, and P(=V) is an orthonormal matrix that performs a change of 
basis,, we can think of X Pk  as the rotation and projection of old features X 
(in m-dim space) into new latent variables T (in k-dim space) 

To use use the solution to this reduced dimension regression problem to 
solve the original problem of predicting class labels y given a new set of 
feature measurements Xnew, we can now do 

Key point: after projecting into latent variables, there is no reason we 
have to restrict ourselves to linear regression!  We instead could just use 
these new features and do a nonlinear regression using SVMs, quadratic 
discriminant functions, or whatever we want. 



             Digression (but will become relevant) 

Power method algorithm, for computing eigenvalues, eigenvectors. 



             Digression (but will become relevant) 

Power-method-like algorithm for computing X = T P’  (basically, SVD). 



Working Towards PLS 
Recall the decomposition  X  =  U D V’ = T P’  and that T = X P rotates and 
projects columns of X into a set of orthogonal columns in T, the so-called 
principal components or latent variables. 

First, note that vectors in P (=V) are eigenvectors of X’ X 

Now, if we have centered out feature measurements (columns of X) by 
subtracting the mean of each column, X’ X has a specific interpretation 

Sample  
Covariance 
Matrix! 



Working Towards PLS 
Thus, the first k principal components maximize the ability to describe the 
covariance or spread of the data in X, that is Cov(X,X) = X’ X.  For example, 
the first component  t1 = X p1 maximizes cov(t1,t1) = p1 X’ X p1. 

Problem: rotation and data reduction to explain the principal variation in X is 
not guaranteed to yield latent features that are good for predicting y. 

Solution, and the basic idea behind PLS: project to latent variables that 
maximize the covariation between Xand y, namely Cov(X,y). 

So for the first latent vector, search for a vector  t = X w  such that we 



NIPALS Algorithm (PLS1) 

this gives first latent variables t and u... apply again to get next ones, and so on 
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PLS2 
PLS2 – we have multiple class labels, so there is a whole matrix Y of dependent 
variables and matrix B of regression coefficients.   

We could treat this as multiple, separate PLS1 problems (and that might even be 
best from a classification accuracy standpoint), but if you insist on simultaneous 
decomposition, we can project both X and Y into latent variable spaces T and U, 
such that T and U are coupled, and chosen to maximize cov(X,Y) = X’ Y . 

Then we can learn a regression function 
between the T and U latent variables, using 
linear regression or SVM or ... 



PLS2 Algorithm 

Note, if Y has only 1 column, this reduces to PLS1 (q becomes 1, u becomes y) 
this gives first latent variables t and u... apply again to get next ones, and so on. 



Comparisons 
Latent variables Overview (as related to SVD) 

PLS1 

PLS2 

Bookstein 

wi is left singular vector of X’ y 
Deflate X and y 

wi is left singular vector of X’ Y 

Deflate X and Y 
qi is right singular vector of X’ Y 

svd(X’ Y) = W D Q’ 

no deflation (since no iteration) 

extracts multiple left/right singular  
vectors simultaneously 

ti = X wi 

ti = X wi 

ui = X qi 

T = X W 

U = Y Q 



ICCV 2009 



Schwartz et.al. Approach 

•  Sliding window approach to pedestrian detection 
•  Compute a feature vector within each window and try to

 classify it as human or non‐human 

•  Feature vector consists of features extracted from overlapping
 blocks within a candidate detection window 

•  Features computed in each block are 
–  HOG descriptors (e.g. Dalaal and Triggs) 
–  texture features computed from co‐occurrence matrices 
–  color frequency (number of times each color channel contained the

 highest gradient magnitude when computing HOG features) 

•  Full feature vector has more than 170,000 dimensions! 



Schwartz et.al. Approach 

•  Use PLS1 to project the 170,000 dimensional feature space
 down to 20 dimensions 

•  Train a Quadratic Discriminant Analysis (QDA) classifier in the
 20 dimensional latent space. Noted you could also use SVM,
 but since PLS gives good separability between classes, it is
 possible to use the simpler (and less expensive) classifier. 

•  Compared performance with other classifiers using 10‐fold
 cross‐validation. 



PCA versus PLS 

PLS gives better class separability for the first 2 dimensions 



PCA versus PLS 

PCA worked best with a latent space of 180 dimensions 
PLS worked best with a latent space of 20 dimensions 



Tuning 

Using HOG + Texture + Color Frequency 
together did better than individually 

Using Kernel SVM or QDA did best 
for classification after PLS reduction 



It is computational worth it... 



Concern with Runtime 
To speed up classification during run time, they came up with a two-stage 
approach where they first do classification using a smaller set of features 
from a subset of most discriminative blocks (determined offline).  Windows 
that pass that test are then analyzed with the full set of features. 

this graph shows the 2-stage approach does not degrade overall performance 



Some sample results 

Remember to show the video 



Evaluations 



Evaluations 



Analysis 

plotting the set of weight 
vectors w (recall these are 
the left singular vectors of 
X’ y) gives some indication 
about what features/location 
contribute most to each 
latent variable. 





Bookstein Approach 

•  Original variables X are the intensity values in a 3D
 volumetric PET scan, concatenated into a big vector 

•  Want to explore covariation of locations in the brain
 with different tasks Y 

•  Uses PLS (the Bookstein version!) to extract the
 “singular images” (weight vectors wi) from  X’ Y 

•  Then plot these with respect to 3D brain coordinates 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This was the best reference 
(most understandable).  Look 
here first! 


