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Abstract

This paper addresses the problem of reconstructing the
3D motion trajectories of particle swarms using two tem-
porally synchronized and geometrically calibrated cam-
eras. The 3D trajectory reconstruction problem involves
two challenging tasks - stereo matching and temporal track-
ing. Existing methods separate the two and process them
one at a time sequentially, and suffer from frequent irre-
solvable ambiguities in stereo matching and in tracking.

We unify the two tasks, and propose a Global Correspon-
dence Selection scheme to solve stereo matching and tem-
poral tracking simultaneously. It treats 3D trajectory acqui-
sition problem as selecting appropriate stereo correspon-
dences among all possible ones for each target by minimiz-
ing a cost function. Experiment results show that the pro-
posed method has significant performance advantage over
existing approaches.

1. Introduction

Phenomena that can be abstracted as particle swarms
such as insect swarms, bird flocks, and fish schools occur
prevalently in our environments. They have attracted signif-
icant attention by scientists in many disciplines [12, 10, 3].
The availability of the 3D motion trajectory for each indi-
vidual in the swarm can greatly facilitate the study of their
collective behavior. There however has been little research
towards developing effective methods to achieve this pur-
pose.

A feasible way to measure the 3D motion trajectories is
through using multiple video cameras. The cameras cap-
ture these dynamic targets from different viewing direc-
tions, and record their positions projected onto the 2D im-
age planes at each time step. The problem we need to solve
is to retrieve the time-varying 3D locations of these tar-
gets from the video sequences. It involves two challenging

tasks, namely, stereo matching - establishing the stereo cor-
respondences across views - and tracking - finding motion
correspondences for the particles. There have been several
approaches proposed to accomplish such tasks. These ap-
proaches can be classified into two main groups.

In the first category, stereo correspondences are first es-
tablished at each frame to reconstruct 3D locations of the
targets. The locations corresponding to the same target at
different frames are temporally associated to yield the final
3D trajectory [8, 11, 13]. However, stereo matching ambi-
guities frequently arise, especially when binocular system
is employed as shown in Figure 1(a) . Consequently, the
final result would be greatly compromised by incorrect 3D
locations caused by wrong matches.
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(b) During t3−t6, the projections
of two targets on the image plane
become very close, making track-
ing difficult.

Figure 1. Ambiguities in stereo matching and 2D tracking.

In the second category [4, 7, 5], targets are first tracked
throughout the image sequence captured by each camera.
The resultant 2D tracks are then matched using camera ge-
ometry to generate 3D trajectories. For such methods, mo-
tion cue is used to disambiguate stereo matching. How-
ever, tracking of large quantity of targets in image sequence
is frequently interfered by occlusion (which occurs when
image projections of several targets overlap) and interac-
tion (which occurs when multiple targets move closely) as
shown in Figure 1(b).

In both strategies mentioned above, tracking and stereo
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matching are artificially regarded as two independent suc-
cessive stages. In fact, these two stages can facilitate each
other. Motivated by this observation, we propose an unified
method to disambiguate tracking and stereo matching si-
multaneously. We treat the reconstruction of 3D trajectories
as selecting a sequence of stereo correspondences between
the image projections of the targets throughout the entire
time span. All the frames are taken into account, and the
optimal trajectories are obtain by minimizing a cost func-
tion incorporating three cues, namely epipolar constraint,
motion coherence, and configuration observation match.

Experimental results on synthetic data demonstrate that
the proposed method exhibits significant advantage over ex-
isting approaches in presence of occlusion and severe inter-
action. We also test the proposed method on a challenging
real-world case - a few hundreds of fruit flies flying freely in
an acrylic box - and successfully obtain their 3D trajectories
as the supplementary video shows.

The major contribution of this paper is twofold:

• We present a global optimization framework that in-
corporates all available cues to solve tracking and
stereo matching simultaneously for large swarms of in-
distinguishable particle-like objects.

• We are the first to obtain complete 3D motion trajec-
tories of a swarm of hundreds of flying fruit flies, en-
abling biologists to conduct thorough study of collec-
tive behavior of fruit flies.

2. Related work

Numerous approaches have been developed for multi-
target tracking in image sequence, including MHT[14],
JPDAF[1], Particle Filter[9], Greedy Assignment[17], and
Track Graph[15]. Among them, Greedy Assignment(GOA)
is regarded as the most efficient for dealing with large num-
ber of targets, and it has been used to track a large swarm
of flying bats [2]. In [18], GOA was adopted to extract
2D tracks of flying bees from image sequence. By virtue
of narrow baseline between cameras, the curvature infor-
mation of these tracks was utilized to enhance the perfor-
mance of stereo matching. However, all the above methods
suffer from inherent ambiguity of 2D tracking. Likewise,
approaches through stereo matching followed by tracking
would also fail in presence of stereo matching ambiguities.
A few methods incorporate tracking and stereo matching to
generate more reliable results. Du et al. [4] segmented 2D
tracks when interaction occurs, and then established cor-
respondences among these segments. However, the com-
mon time span between segments could be too short to re-
solve stereo matching ambiguity. In addition, the resultant
3D trajectories are undesirably broken into many segments.
Willneff et al. [19] proposed a spatio-temporal matching al-

gorithm using motion prediction to eliminate stereo match-
ing ambiguities. Unfortunately, the algorithm would fail in
presence of stereo matching ambiguities, because generat-
ing reliable prediction highly depends on correct 3D loca-
tions in the previous frame. In addition, only several con-
secutive frames are taken into account, whereas our method
processes the entire time span in a global manner.

3. 3D trajectory reconstruction

Consider a 3D swarm of flying targets of similar ap-
pearance and small size. They are recorded by two geo-
metrically calibrated and temporally synchronized cameras
from different viewing directions. At regular time steps
t = 1, 2, . . . , T , the cameras capture these targets, produc-
ing image blobs with centers being Mt = {mv,i

t }, where
v ∈ {1, 2} indicates the v-th view and i ∈ {1, 2, . . . , Nv

t }
labels the i-th blob in the v-th view.

To recover the 3D trajectories of the targets, we need to
establish stereo correspondence between blobs of different
views over time. We regard each pairing of blobs as a po-
tential stereo correspondence. The set of all possible pair-
ings at time step t is given by Ht = {m1,i

t } × {m2,j
t }. A

pairing could be either true or false correspondence. Our
goal is to correctly assign the true pairings to each target.
Let St = (s1

t , s
2
t , . . . , s

N
t ) be a configuration of pairings as-

signed to the targets at time step t, where sn
t represents the

pairing chosen for target n. Our mission is then to find a
sequence of configurations S1:T = (S1, . . . , ST ) that best
explain the image blobs recorded during the capturing pro-
cess. Thereafter, the 3D motion trajectory of each target can
be reconstructed from respective sequence of stereo corre-
spondences sn

1:T = (sn
1 , . . . , sn

T ) through triangulation.

4. Global correspondence selection

We propose a Global Correspondence Selection (GCS)
scheme to solve the problem via finding an optimum con-
figuration sequence S∗1:T that minimizes a cost function
f(S1:T ), that is:

S∗1:T = arg min
S1:T

f(S1:T ). (1)

The cost function f(·) is designed to incorporate three cues
- epipolar constraint, kinetic coherency and configuration
projection match. The details are discussed in following
sections.

4.1. Epipolar constraint

If the blobs in different views correspond to the same 3D
target, they should satisfy the epipolar constraint. This is
an important cue for judging how likely a pairing of blobs
is a true stereo correspondence. Given a paring, the cost of
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Figure 2. The average distance is defined as ρe(s
n
t ) = (d1+d2)/2.

being corresponding to the same target is defined as

fe(sn
t ) = ρe(sn

t ) (2)

where ρe(·) represents the average distance between the
blob centroids and their respective epipolar lines as shown
in Figure 2. To rule out the apparently false pairings whose
blobs are far from respective epipolar lines, we set fe(sn

t ) =
∞, if ρe(sn

t ) is greater than a threshold εe. For all pairings
selected at time t, the total cost of their being true corre-
spondences is obtained by

fE(St) =
N∑

n=1

fe(sn
t ). (3)

4.2. Kinetic coherency

Each pairing gives rise to a 3D location through trian-
gulation. A genuine pairing sequence should generate 3D
locations that is feasible as a trajectory traveled by a phys-
ical object. To evaluate the likelihood of being a trajectory,
kinetic model is used. At each time instance, the kinetic
model gives a prediction of the motion state of the target
based on previous states. A trajectory is considered more
likely to be traveled by a target if the overall prediction er-
ror is smaller.

This is an important cue for selecting appropriate pair-
ing sequence for a target. Consider the sequence of pairings
sn
1:T = (sn

1 , . . . , sn
T ) assigned to target n and their corre-

sponding 3D locations denoted by x1, . . . ,xT . The predic-
tion inaccuracy at time t is defined as

fk(sn
t−K , . . . , sn

t ) = ρk(x̃t,xt). (4)

The predicted 3D location x̃t is computed from K pre-
vious states using the kinetic model, namely x̃t =
P(xt−K , . . . ,xt−1). The function ρk(·, ·) is the Euclidean
distance between two 3D locations.

Selection of kinetic model relies on priori knowledge of
the motion of the subjects. We adopt here a simple and
yet powerful kinetic model - nearest-neighbor model [17],
i.e., K = 1 and P(xt−1) = xt−1. Although nearest-
neighbor model does not accurately describe the motion in
most cases, it has been proved to be an effective model
adopted in many tracking applications, particularly when
the motion is complex and hard to be formulated, such as

wandering people and drifting insects. To reduce the num-
ber of candidate trajectories, we assign a threshold εk to
remove impossible candidates by setting fk(sn

t−1, s
n
t ) =∞

when ρk(xt−1,xt) > εk. By summing up the prediction er-
rors of all targets, we get the total kinetic cost of successive
pairings:

fK(St−1, St) =
N∑

n=1

fk(sn
t−1, s

n
t ). (5)

4.3. Configuration observation match

Another cue comes from measuring the level of match
between configuration and observation. We assume that: 1)
cameras are well placed so that they can capture most tar-
gets simultaneously; 2) at each time step, the proportion of
overlapping image blobs on the 2D image plane is relatively
small. The first assumption holds in most cases; the second
one is also reasonable when the number of flying targets is
moderate - hundreds to thousands. The two assumptions
statistically imply that, in each view, one blob corresponds
to only one particular target and vice versa.

Having noticed the tendency of one-to-one mapping be-
tween blobs and targets, we propose a cost to evaluate how
well a given configuration St accounts for the observed
blobs Mt:

fC(St,Mt) =
1

N1
t

N1
t∑

i=1

|nc(m
1,i
t , St)− 1|

+
1

N2
t

N2
t∑

i=1

|nc(m
2,i
t , St)− 1|,

(6)

where mv,i
t , Nv

t denote the blob centers and the total num-
ber in v-th view, and nc(·, ·) represents the number of tar-
gets to which the blob is mapped with regard to current con-
figuration of assignments. We use a threshold εc to prevent
the configurations from mapping a blob to too many targets.
That is, if nc(·, ·) > εc, the match cost will be set to infin-
ity, fc(St,Mt) = ∞. Figure 3 shows the costs of different
configurations.

5. Cost function and optimization method

Combining the above-discussed three terms additively,
we obtain the overall cost function:

f(S1:T ) =

α

T∑
t=1

fE(St) + β

T∑
t=1

fC(St,Mt) + γ

T∑
t=2

fK(St−1, St),

(7)
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Figure 3. h1
t , h
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3
t , and h4

t are four possible pairings. The con-
figuration in (b) is more desirable than that in (a). In (a), blob a
relates to two targets but b has no target related; while in (b), one-
to-one mapping between the blobs and targets are established in
each view.

where α, β, γ are the weights of the terms. The cost func-
tion can be recursively decomposed into

f(S1: t) = f(S1: t−1) + Δf(St). (8)

where the increment of cost Δf(St) is

Δf(St) = αfE(St)+βfC(St,Mt)+γfK(St−1, St). (9)

The cost function can be optimized by dynamic program-
ming. It is accomplished in two stages: 1) proposing pos-
sible configurations for next frame, 2) propagating cumula-
tive minimum cost from previous ones to each newly pro-
posed configuration.

Since the number of possible configurations increases
exponentially with the number of target, we use Gibbs sam-
pling [6] to only obtain those configurations with low costs.
The initial configurations at the first frame can be sampled
from 1

S1 ∼ P [f(S1)] , (10)

where P (·) denotes a probability function that is decreas-
ing at positive interval such that configurations with low
costs could be sampled with high probabilities. Here, we let
P (u) ∝ exp(−u). For each sample at t-th frame, S

(i)
t , the

configurations of the next frame can be proposed by sam-
pling

St+1 ∼ P [Δf(St+1)] . (St = S
(i)
t ) (11)

The cumulative minimum cost of a newly sampled con-
figuration S

(j)
t+1, denoted by f∗(S(j)

t+1), can be computed
from

f∗(S(j)
t+1) = min

i

[
f∗(S(i)

t ) + Δf(S(j)
t+1)

]
. (12)

The number of samples at each frame is prevented from be-
ing too large by removing those samples with large costs.

1At this initial stage, samples with same assignments but in different

orders, e.g. S
(1)
1 = (h1, h′

1) and S
(2)
1 = (h′

1, h1), should be treated as
the same sample.

Otherwise it will increase exponentially with the number of
frames processed. Configuration sampling and cost prop-
agation are performed frame by frame and finally produce
the optimum result as shown in Figure 4. We can see that
through optimization, both ambiguities in stereo matching
and tracking can be resolved as shown in Figure 5.
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Figure 4. Optimization is done by dynamic programming - sam-
pling new configurations at next frame and propagating cumula-
tive minimum costs to them until reaching the last frame. Finally
the optimum configurations sequence S∗

1:T is obtained by tracing
back.

6. Variable number of targets

We have so far considered the case where the number
of target is constant. The number of targets in practice,
however, is variable since targets might enter and leave the
scene. We introduce an additional variable O to represent
the absent state of target. By setting the dimension of con-
figuration large enough, the way to handle variable number
of targets is similar to that of handling fixed one. The dif-
ference is that, at each frame, a dummy pairing O can be
assigned to a target, indicating this target is not in the scene.

By introducing an additional pairing O, the two costs of
epipolar constraint and kinetic coherency needs to be mod-
ified. We redefine the two costs based on two rules: 1) the
targets are encouraged to keep absent from the scene with
zero costs; 2) a target tends to switch the visibility state only
when it is impossible to find two pairings at adjacent video
frames that can be assigned to this target with finite cost of
kinetic coherence. The first rule indicates fe(O) = 0 and
fk(O,O) = 0, which ensures that whether a target is absent
or not mainly relies on configuration observation match.
The second rule suggests that the cost of visibility switching
fk(h,O) (or fk(O, h)), denoted by η, should be properly
set so that if there is a pairing h′ that fk(h, h′) < ∞, we
have βfk(h, h) + αfe(h) < βfk(h,O) + αfe(O). It yields
η > α/β · εe + εk.

7. Efficient implementation

The above-disccussed optimization problem can be bet-
ter understood by using a graph representation. We con-
struct a directed graph as shown in Figure 5(c) where a node
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(a) Imaged targets (small circles) are associated to possible corre-
sponding targets at next frame by directed links. Ambiguities exist
in both tracking and stereo matching, e.g., target a has two temporal
correspondences at next frame and three possible stereo matches in
the right view.

a

(b) Ambiguities are removed after optimization

(c) Graph representation of pair-
ings. Two pairings are connected
by an edge weighted by the cost
of kinetic coherency in (4).

(d) Pairing paths are extracted
for each of the three targets
(marked by red, greed and blue
respectively) through optimiza-
tion.

Figure 5. Through optimization of the cost function, ambiguities
in both stereo matching and tracking are eliminated.

is the pairing satisfying the epipolar constraint; an edge con-
nects two nodes and carries the cost of kinetic coherence at
successive frames. Acquiring 3D trajectories is equivalent
to finding N optimal paths in this graph. The number of
target, N , can be set with regard to the maximum number
of detected blobs in video streams. If N is small, the opti-
mal paths can be obtained by direct optimization. But when
the target number is large, direct optimization is infeasible,
because the computational complexity is still too high in
spite of employing sampling techniques. So we propose
a two-phase strategy to significantly reduce the computa-
tional costs.

7.1. Graph simplification

The computational costs could be significantly reduced
if many of false pairings included in the graph are iden-
tified and removed. A hypothetical target computed from
false pairings would disappear abruptly when the paired
blobs depart from their respective epipolar lines at some-

1t �

1t �

t

1t �

t

1t �

h

Figure 6. A false pairing h is detected, when both blobs leave re-
spective epipolar lines of each other at t + 1 without tracking am-
biguity - no other blob moves into the adjacent regions indicated
by gray disks from time t− 1 to t + 1.

1t �

t

1t �

a

1
h

2
h

3
h

4
h

Figure 7. If a paring is temporally connected by more than one
parings at adjacent frames - e.g., h2, h3, h4 - or shares blobs with
other parings - e.g., h1 and h2 share the blob a, it is an ambigu-
ous pairing. The ambiguous pairings (yellow dots) are grouped
into a cluster (indicated by gray shadow), if they are temporally
connected or share blobs.

time. This indicates that nodes with no out link in the graph
are likely to be false pairings. To determine whether a node
with no out link is a false pairing, we investigate motions of
related blobs on the image planes. As shown in Figure 6, if
both blobs move from previous frame to next frame with-
out tracking ambiguity, the paring is identified as a false
stereo correspondence. In the same manner, the false pair-
ings which appear suddenly can also be recognized. The
recognized false parings would be removed from the graph
and the process is repeated until no more false pairing can
be found.

7.2. Optimization in clusters

If no stereo-matching ambiguity exists in a pairing - a
blob has only one corresponding blob on the related epipo-
lar line in the other view - the two blobs can be established
as a stereo correspondence. Through graph simplification,
this kind of pairings emerge in large number. Many of them
connect each other one-by-one and form a paring path with-
out branches. These paths in fact produce most part of
the result - 3D trajectory segments of targets. Therefore
it is unnecessary to take them into account in optimization.
We only focus on the remaining ambiguous pairings, which
have either stereo-matching ambiguities or tracking ambi-
guities.

These ambiguous pairings are grouped into different
clusters by introducing an equivalence relation, which is
defined such that the two ambiguous pairings connected or
sharing blobs are classified into the same cluster as shown
in Figure 7.
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Figure 8. The ambiguous pairings(colored dots) are classified into
clusters (marked by different colors). Optimization is done in each
cluster and finally optimum paths are acquired (colored curves).

Optimization is done separately in each cluster. Each
cluster is first extended by adding its adjacent pairings. Let
MAi be the related blobs of the pairings in the cluster Ai.
We minimize the cost f(SAi) to yield the optimum paths
S∗Ai for each cluster. The optimum paths of all clusters
and the already obtained path segments are fused together,
and finally produce the global optimum paths throughout all
frames as shown in Figure 8. The technique significantly re-
duces the computational cost, enabling our method handle
massive targets more efficiently.

8. Experiments

We test the proposed method on simulated particle
swarms of various challenging levels. We also apply the
proposed method to a real-world case of reconstructing the
3D trajectories of fruit fly swarms.

8.1. Simulated particle swarm

Simulated particles, confined in a cube of side length 2,
are initialized with random locations and velocities. In each
step, particle velocity is updated using

vt = θvt−1 + nt (13)

where θ ∈ [0, 1] is a parameter used to control the smooth-
ness of velocity and nt ∼ N (0, 0.05Id) ( Id is a 3 × 3
identity matrix ) is a Gaussian noise to perturb the velocity
vector. Particle location is then computed from previous lo-
cation by xt = xt−1 + vt. At each time step, the particles
are projected onto two image planes of 800×800 resolution
from different views, simulating two cameras. Each parti-
cle is rendered as a sphere of the same color using OpenGL.
The radius of the sphere is set to 0.02 to generate the pro-
jected balls in image sequences with diameter of 5 pixels.
The random noises are added to simulate real imaging pro-
cess.

Two cases are simulated to test the performance of the
proposed method. In the first case, the average velocity is
set around 5 pixels per frame, the number of targets varies

from 10 to 100. In the second one, we change the aver-
age velocity from 6 pixels to 24 pixels per frame while the
number of targets is set to 40. In both cases, θ is randomly
chosen for each target around 0.9 to simulate the motion of
flying insects. Evaluation metrics and results are presented
in the next sections.

8.2. Evaluation metrics

To evaluate the results, we propose a metric named Re-
construction Association Error(RAE) which measures er-
rors in both reconstruction and temporal association. It is
defined as

RAE =
[
Nmc + Nfc + Nma + Nfa

2N · T
]

, (14)

where N and T are the numbers of targets and frames re-
spectively. Nmc denotes the numbers of missing genuine
correspondences. Nfc is the number of falsely selected cor-
respondences. Nma, Nfa are the numbers of missing as-
sociations and false associations between successive frames
respectively.

8.3. Results on simulated particle swarms

We compare our method with recent Relative Epipo-
lar Motion (REM) method [4] that uses 2D trajectory-
matching strategy, and an extension of REM adopting the
GOA tracker [17] instead of nearest neighbor tracker. The
reconstruction error and resulted 3D trajectories are shown
in Figure 9 and Figure 10 respectively. In the first case,
the increasing number of targets will result in more stereo
matching ambiguities, producing more 2D tracking errors.
Since GOA-REM utilizes motion prior to facilitate the 2D
tracking, it outperforms REM. In the second case, due to the
increasing tracking ambiguities, both methods fail to obtain
2D tracks efficiently. Unlike the above two methods, our
approach achieves superior results in both cases, because it
unifies tracking and stereo matching by global optimization
in both spatial and temporal domain. As shown in Figure
11, the proposed method is resiliant to tracking ambiguity
on 2D image plane.

8.4. Results on fruit fly swarm

The collective behavior of fruit flies has attracted signif-
icant attention from biologists[16, 10]. One important way
is analyzing their 3D motion trajectories. We applied our
approach to acquiring the 3D trajectories of large number
of freely flying fruit flies.

The fruit flies flied in an acrylic glass box of size 35cm×
35cm × 25cm, where the background was illuminated by
white plane lights. Two synchronized and calibrated Sony
HVR-V1C video cameras working in high speed mode of
200fps were used to capture the scene from different views.
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(a) Ground truth (b) REM (RAE : 0.664) (c) GOA(RAE : 0.345) (d) The proposed GCS( RAE :
0.008)

Figure 10. Results of 60 targets using different methods. The black lines denote the missing correspondences/associations, and the red
lines denote the false correspondences/associations. Our method yields remarkable result as in (C).

Figure 11. GCS yields correct tracking result, in spite of tracking ambiguity on 2D image planes.
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Figure 9. The proposed GCS method yields remarkable results in
spite of high densities and fast speeds, while results from track-
matching methods are poor, as errors reach up to 0.9.

The image resolution is 960 × 540. We first detected the
fruit flies by background subtraction. We then applied our
method to reconstruct the 3D trajectories of a sequence with
200 frames. We finally obtained 438 trajectories in to-
tal. The average length of these trajectories is 60.7 frames.
Among all of them, 86 trajectories are longer than 100
frames. Figure 12 demonstrates the acquired 3D trajecto-
ries. At each frame, the blobs that correspond to recon-
structed targets, in average reach 77.6% percent of detected
blobs in each view. The result is promising, since some tar-
gets are not simultaneously captured by both cameras, par-
ticularly the targets near the image boundaries as shown in
Figure 12.

9. Conclusion

We have proposed a novel approach for acquiring the
3D trajectories of a swarm of flying targets. The proposed
method simultaneously solves tracking and stereo matching
in a global manner, which significantly reduced ambigui-
ties. The framework can further be extended in many ways:
it can accommodate additional information such as texture
and color if available; the pairing can be replaced by group-
ing in multiple cameras; high-order kinetic coherency can
be adopted to achieve better results.
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ing. In Proc. of 8th Int. Symp. on Flow Visualization (CD-
ROM), pages 240–1, 1998.

[6] S. GEMAN and D. GEMAN. Stochastic relaxation, gibbs
distributions, and the bayesian restoration of images. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
6(6):721–741, 1984.

[7] Y. Guezennec, R. Brodkey, N. Trigui, and J. Kent. Algo-
rithms for fully automated three-dimensional particle track-
ing velocimetry. Experiments in Fluids, 17(4):209–219,
1994.

[8] N. KASAGI and K. NISHINO. Probing turbulence with
three-dimensional particle-tracking velocimetry. Experimen-
tal thermal and fluid science, 4(5):601–612, 1991.

[9] J. MacCormick and A. Blake. A probabilistic exclusion prin-
ciple for tracking multiple objects. International Journal of
Computer Vision, 39(1):57–71, 2000.

[10] G. Maimon, A. D. Straw, and M. H. Dickinson. A sim-
ple vision-based algorithm for decision making in flying
drosophila. Current Biology, 18(6):464–470, March 2008.

[11] N. Malik, T. Dracos, and D. Papantoniou. Particle track-
ing velocimetry in three-dimensional flows - part ii:particle
tracking. Experiments in Fluids, 15(4):279–294, 1993.

[12] K. Norris and C. Schilt. Cooperative societies in three-
dimensional space: on the origins of aggregations, flocks,

and schools, with special reference to dolphins and fish.
Ethology and Sociobiology, 9(2-4):149–179, 1988.

[13] F. Pereira, H. Stuer, E. Graff, and M. Gharib. Two-frame
3d particle tracking. Measurement Science and Technology,
17(7):1680–1692, 2006.

[14] D. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, 1979.

[15] J. Sullivan, S. Carlsson, and E. Hayman. Tracking and la-
belling of interacting multiple targets. pages 619–632, 2006.

[16] L. Tammero and M. Dickinson. The influence of visual land-
scape on the free flight behavior of the fruit fly drosophila
melanogaster. Journal of Experimental Biology, 205(3):327–
343, 2002.

[17] C. Veenman, M. Reinders, and E. Backer. Resolving motion
correspondence for densely moving points. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, pages
54–72, 2001.

[18] A. Veeraraghavan, M. Srinivasan, R. Chellappa, E. Baird,
and R. Lamont. Motion based correspondence for 3d track-
ing of multiple dim objects. In IEEE Conference on Acous-
tics, Speech and Signal Processing, volume 2, 2006.

[19] J. Willneff and A. Gruen. A new spatio-temporal match-
ing algorithm for 3d-particle tracking velocimetry. In The
9th International Symposium on Transport Phenomena and
Dynamics of Rotating Machinery, Honolulu, Hawaii, USA,
February, pages 10–14, 2002.

1585


