
Joint Reconstruction of 3D Shape and Non-rigid Motion in a Region-Growing

Framework

Ye Liu and Yan Qiu Chen

School of Computer Science

Fudan University, Shanghai, China

{10110240029 chenyq}@fudan.edu.cn

Abstract

This paper addresses the problem of simultaneously esti-

mation of 3D structure and motion of moving surfaces from

multi-view sequences. We model the surface locally as a

9-parameter spatio-temporal plane and a region growing

mechanism is used to guarantee proper initial values are

provided for parameter estimation. The algorithm starts

with feature points that have been matched across views and

time, and dense structure and motion then grow from these

points. As demonstrated in the experiment, our method is

able to handle large motion , topology change and frequent

self-occlusion and the resulted 3D structure and motion are

dense and accurate which is particularly useful for appli-

cations that require precise quantitative analysis of 3D mo-

tion.

1. Introduction

It is still a challenging task to recover the 3D motion of

deforming surfaces from multiple calibrated cameras. This

kind of motion can be non-rigid and quite complex, precise

measurement of such motion is difficult and its potential

applications include human face expression and human per-

formance acquisition, animation, games and even physical

science.

A commercialized method is to fix multiple markers onto

the object’s surface[13, 24], and then track these markers.

This kind of method fails to get dense motion field due

to the limited number of markers. Recent years, mesh-

tracking methods[4, 2, 19] have become popular, they as-

sume a known 3D model (usually triangulated mesh) in the

first frame, and then track this model with various cues.

It is even possible to track objects in monocular case[16].

The fixed topology nature of triangulated mesh greatly fa-

cilitates the long-sequence tracking process, but it is also a

drawback when the topology of the scene changes. Besides,

accurate 3D model is difficult to obtain, and the noise of the

3D model will be introduced to the estimated motion.

Thus joint estimation of 3D structure and motion

seems a better alternative, and there has been a number

of methods[12, 1], among which variational scene flow

methods[9, 23, 20] have been successful recently. But they

are not able to handle relatively large motion, and most of

them only consider the binocular case.

We propose a method that can simultaneously recover

3D structure and motion of deforming surfaces accurately

from image sequences of multiple views. Starting from a set

of feature points that have been successfully matched across

views and time, this method then simultaneously estimates

3D position and motion of dense sample points on the sur-

face in a 9-parameter non-linear local plane fitting. Points

that have been successfully matched will guide those nearby

unmatched points by providing reasonable initial values un-

til all the sample points on the surface are matched. As

illustrated later, this method is based on a reasonable as-

sumption, and it handles self-occlusion, topology change

and large motion naturally. It does not require silhouette in-

formation or low-level cues such as optical flow and stereo

matching which are used in many 4D methods. As demon-

strated in the experiments, our method is able to recover

accurate, dense 3D structure and motion field.

The rest of the paper is organized as follows. The next

section will summarize work related to this paper. Section 2

presents the detailed techniques used in our method includ-

ing the local spatio-temporal model, feature points match-

ing, region growing and some other details. Section 3 gives

the experiment results on both synthetic and real datasets.

Section 4 discusses the method. And finally, section 5 con-

cludes the paper.

1.1. Related Works

Reconstructing 3D shape from multi-view images is a

fundamental problem in computer vision which has been

studied for many years. Various methods have been pro-

posed to solve this problem[17]. Recent years, several

methods[3, 7, 5] based on the idea of region growing have



been very successful. They start by finding sparse corre-

spondences as seeds for region growing, then the matched

points can guide those nearby points that are to be matched

until the whole surface is reconstructed. Our method ex-

tends the basic idea of region growing but addresses the dif-

ferent problem of simultaneously estimation of 3D shape

and motion.

Among those marker based methods, White et al. [24]

captured the shape and motion of folded cloth for anima-

tion using cloth that was printed with known pattern (color

triangles). But their motion field is still not dense enough

for some applications and it is not always possible to print

pattern on arbitrary surfaces, so mark-less methods are nec-

essary.

Among the recent mesh-tracking methods, Aguiar et

al. [2] tracked a laser-scanned 3D model based on optical

flow. Another mesh deformation method was proposed in

[4], they estimated the positions of verticals of a triangu-

lated mesh by multiple non-linear optimizations. These two

methods are not able to handle topology changes, and accu-

rate 3D model of the first frame is usually difficult to obtain.

In [21], a mesh-tracking method that can handle large mo-

tion and topology change was proposed by Varanasi et al.

They track feature points extracted from both the image and

the 3D model and then densify the motion field using lapla-

cian diffusion, which is actually a kind of interpolation, thus

this method may not guarantee accurate motion field.

Some earlier work explored the spatio-temporal repre-

sentation of moving surfaces, in [12], a multi-resolution

subdivision surface was fit in order to simultaneously re-

cover 3D structure and motion field. In [1], a method was

proposed which divide the surface into a number of sufels,

and estimate the normal, motion and reflectance of each

sufel. There is no other mechanism in their method that

make sure it recovers accurate and dense structure and mo-

tion. Vedula et al. [22] calculates shape and motion by carv-

ing a 6D volume, but due to the computational complexity,

the resolution of shape and motion is relatively low. There is

also method that uses only silhouette information [6] which

is able to handle weakly textured surfaces, but it may not be

suitable for precise use.

Some early work exploited the relationship between op-

tical flow and scene flow [25, 18]. Variational methods have

achieved good results. An earlier work in [15] solved the

problem by minimizing an image-based matching score in

a level set framework. Several recent works [9, 23, 20] have

achieved precise results on their synthetic datasets. But they

did not consider the multi-view case which is more compli-

cate than the binocular case. We have tested our method on

their synthetic dataset and compared with their results in the

our experiment.
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Figure 1. The stages of the proposed method. The local plane

model is for both the feature matching and region stages.

2. Method

2.1. Method Overview

One major reason why region growing methods in multi-

view stereopsis are successful is that they made reasonable

assumption about the real world surfaces. If two points

on an object’s surface are close to each other, their depth

and normal are also close to each other. So on the corre-

sponding projected images, points that have been success-

fully matched provide good initial values of shape (depth,

normal) for the nearby unmatched points. This assumption

can be further extended to objects in the scene deforming

over time: if two points on the surface at time t are close

to each other, they are also close in time t+1. This means

those points with known depth, normal and motion can pro-

vides good initial values for depth, normal and motion of

neighboring points.

Region growing requires some stable initial points which

are successfully matched across views and time as input.

We use SIFT[11] in our method because it’s scale and ro-

tation invariant and relatively insensitive to illumination

change. The feature points contain information about the

local and global structure as well as motion of the surface,

how to benefit from them will be deeply discussed in this

paper. The proposed method contains roughly three stages

(See Fig 1). A local plane model is proposed for both the

feature matching and region growing stages.

2.2. Local Spatiotemporal Model

We locally fit a small patch of plane Pt centered at Ct

on the surface at time t as showed in Figure1. If the cam-

eras are calibrated, the transform induced by this plane

between the images of two views i, j is a 3-dof homog-

raphy Hi,j [8]. The 3 parameters of this transform de-

termine the plane uniquely. The plane can be written as

[p1, p2, p3, 1]X = 0. Pt is visible to Nt cameras, corre-

sponding images are Vt = {I1
t , I2

t , . . . , INt

t }. One of them

Ir
t is used as reference image, then the first term of our ob-
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Figure 2. (a) A small patch undergoes a rigid transform from t to

t + 1. (b) One view at t is chosen as reference and sample points

on it are fixed, with which projections on the other views at t and

t + 1 are compared.

jective function can be written as

E1 =
∑

xr
t∈Ω

∑

Ii
t∈Vt−Ir

t

[Ir
t (xr

t ) − Ii
t(Hr,i(x

r
t ))]

2, (1)

Where xr
t denotes the 2D coordinate on the reference image

projected by a sample Xt on Pt. And Ω is the set of sample

points on the patch. This function denotes the SSD (sum

of square differences) of images (without reference image)

that pt projects at time t compared with the reference im-

age. If we set xr
t fixed, the homography Hr,i becomes the

only unknown, thus E1 is determined by three parameters

p1, p2, p3.

The small patch mentioned above undergoes a rigid

transform and becomes Pt+1. This transform has

6 degrees of freedom, and can be expressed as

R(p4, p5, p6, p7, p8, p9), 3 of the 6 parameters are the rota-

tion angles around the center Ct and the other 3 are transla-

tions. If Pt+1 is visible to Nt+1 views, and corresponding

images are Vt+1 = {I1
t+1, I

2
t+1, . . . , I

Nt+1

t+1 }, then the sec-

ond term of our objective function can be written as

E2 =
∑

xr
t∈Ω

∑

Ii
t+1

∈Vt+1

[Ir
t+1(x

r
t ) − Ii

t+1(x
i
t+1)]

2, (2)

where

xi
t+1 = PmiRXt, (3)

Pmi is the projection matrix of camera i. With xt fixed, Xt

can be computed by intersecting the back-projected ray of

xt with Pt. E2 denotes the SSD of images that pt+1 projects

at time t + 1 compared with the reference image at time t.
Finally , the objective function is the weighted sum of

the above two terms

E = E1/Nt + E2/Nt+1. (4)

Now the function has 9 parameters: p1, p2, . . . , p9, three of

which are from the plane, and the rest six from the rigid

transform. Minimizing this function is not easy, because

it’s non-linear and tends to fall into local minimums. Good

initial values are important and necessary. A large part of

our work presented in this paper focuses on providing initial

values for the optimization process.

2.3. Feature Point Detection and Matching

We extract SIFT feature points along with their descrip-

tors for every image at time t and t + 1. Feature points

from every two images at time t are matched according to

their descriptor distances and epipolar constraint. If two

feature points are successfully matched (the descriptors are

close and satisfies the epipolar constraint), they will not be

matched with other feature points. Matched points are trian-

gulated to get 3D points Ft, their descriptors are also kept.

Feature points at time t + 1 are also matched with the same

strategy, and thus we get 3D points Ft+1. Points in Ft

and Ft+1 are exhaustively matched with their descriptors,

matched points in Ft are termed M, which is a subset of Ft.

For every 3D point Xf in M, we minimize objective func-

Figure 3. Normal vector of each feature point can be approximated

by a weighted least square method. The weight decreases with the

Euclidean distance between two points.

tion 4 to get the 9 optimum parameters. Initial values should

be offered before optimization. We observe that the feature

points, although sometimes sparse, contains not only some

isolated 3D positions but also a coarse 3D shape of the ob-

ject, so normal vector n(Xf ) at every point of M can be

approximated by a weighted least square method [14]:

n(Xf ) = arg max
∑

Xi
f
∈Ft

ωi[n(Xf )t(Xi
f − Xf )]2, (5)

where

ωi = exp{
‖Xi

f − Xf‖

h(Xf )
}, (6)

we choose h(Xf ) so that the 10th nearest neighbor has a

weight of 0.1. As the gaussian function 6 decreases fast

when distance increases, points far away from Xf will make

little impact on the normal. And the denser the feature

points are in the neighborhood, the closer the estimated nor-

mal is to the true value. Reasonable estimation is offered

even when feature points are sparse. The initial values of

p1, p2, p3 can be computed with 3D position Xf and the

estimated normal vector.



Normal vector at t+1 can be estimated likewise, then we

can compute a rigid transform (not unique) that turns the

plane at time t to the plane at t+1. In this way all the nine

parameters have their initial values.

Then Xf is projected to corresponding images, and one

view is chosen as reference, A patch of µ by µ pixels cen-

tered at 2D point xr
f is taken as Ω in Equation 1,2, and they

are fixed during the optimization.

2.3.1 Visibility Update

Visibility at t and t+1 should be updated after optimization.

Here we adopt normalized cross-correlation (NCC) as mea-

surement, the sample points on Pt and Pt+1 are projected to

images at t and t + 1, NCC is calculated between reference

image and projected image. If NCC is above θ, we consider

it is visible to this view. The patch is considered success-

fully optimized only when the numbers of visible views at

both t and t+1 are above 2. And we can compute a match-

ing score S as the mean of all the calculated NCC.

S =

∑
i∈Vt

Ncc(r, i) +
∑

j∈Vt+1
Ncc(r, j)

Nt + Nt+1 − 1
. (7)

This matching score tells how successful the optimization

is. The higher the score, the more we can trust the opti-

mization result.

2.4. Region Growing

We adopt a region growing strategy similar to [3], but

we update visibility both at time t and t + 1. An important

aspect of this kind of region growing is to give chance for

optimization with different initial values to those points that

have not been successfully matched, this has been discussed

in [5]. Here, we use a priority queue which determines the

priority according to the matching score S, After extracting

and matching feature points, successfully matched patches

were pushed into the queue. Each time, a patch is popped

out from the queue as a seed, and then new patches grow

from it and are pushed into the queue if they have been

successfully optimized (satisfies the condition mentioned

above).

Every visible view at t of the seed is searched to find

pixels that have not been visited and are neighboring to the

seed’s projection on the image. Once such a pixel is found, a

new patch is created. New patch’s position is determined by

intersecting the back-projected ray of the pixel and the plane

pt of the seed, and the nine parameters are inherited from

the seed. Then the parameters are optimized, if successful,

the new patch will be pushed into the priority queue. The

region growing process terminates when the queue is empty.

The optimization can be carried out in every empty pixel,

but in order to save computational time, it can be done every

β pixel. It is a trade-off between the resolution of the result

and computational time.

2.4.1 Coping with Appearance Change

SSD is sensitive to illumination and view point resulted ap-

pearance change. In order to cope with this, we estimate

scalar factor ri
t for the patch’s pixel values of projection xi

t

and ri
t+1 for xi

t+1, xi
t and xi

t+1 in function 1 and 2 should

be divided by their scalar:

Ii
t(x

i
t) = Ii

t(x
i
t)/ri

t. (8)

and

Ii
t+1(x

i
t+1) = Ii

t+1(x
i
t+1)/ri

t+1. (9)

We don’t add this scalar as a new parameter to optimiza-

tion, because this will increase computational complexity.

Instead, we handle it the same way as visibility, first inher-

ited from the seed before optimization, and updated after

optimization. This is because both appearance difference

and visibility change relatively more slowly than the 9 pa-

rameters and lag within some range is allowed.

2.4.2 Summary of Region Growing

Input : Initial priority queue Q with seeds from

feature points.

Output: Collection C of patches that have been

successfully optimized.

while Q is not empty do
Pop a patch p from Q, its visible views at t and

t + 1 are Vt, Vt+1

foreach image It
i in Vt do

Compute the projection of p on Ii
t as xi

t.

Find a neighboring pixel of xi
t that has not

been visited.

if such a pixel is found then
Create a new patch pn.

Set Ii
t the reference view of pn.

Inherit Vt,Vt+1, appearance scalar and 9

parameters from p.

Optimize parameters.

Update visibility.

if succeed (defined in section 2.4) then
Push pn into Q.

Push pn into C.

end

end

end

end

Algorithm 1: Overall algorithm for region growing.

There are three parameters in our method: patch size µ,

NCC threshold θ and region growing interval β.



3. Experiments

We implemented our method with C++, and a

Levenberg-Marquardt routine included in GSL was used for

non-linear optimization (The Jacobian of the objective func-

tion must be provided). Optimization converges within sev-

eral steps most of the time.

We list the parameters for each experiment.

dataset µ θ β

ball 7 0.95 1

cloth 12 0.7 2

paint 12 0.7 2

face 12 0.7 2

3.1. Synthetic Data

We tested our method on both synthesized data and real

data. There are currently no real data with ground truth be-

cause this kind of ground truth is difficult to obtain. As

a result, several existing methods used synthetic data for

evaluation. We used a dataset synthesized by Huguet et al.

which consists of four images of two hemispheres rotate in

different directions at two time t and t + 1. [9] and some

other variational methods represent the scene flow as cor-

responding optical flow and disparity map, and our method

computes scene flow in 3D space directly, So interpolation

is required to convert our results to their format, which in-

troduces bias. Table 1 gives the results before and after in-

terpolation compared with [9, 23]. We can see that even

after interpolation our method achieves a low optical flow

RMS error RMSu,v and an average angular error AAE
comparable to [9, 23], and an overall RMS error RMSu,v,d′

much lower than the two methods. That’s because the dis-

parity map computed by our method is nearly the same with

the ground truth (See Fig 4(f) and also the reconstructed

3d shape in Fig 4(d)). Our method handles occlusion

RMSu,v RMSu,v,d′ AAEu,v

[9] 0.37 0.83 1.24

[23] with ground truth 0.33 0.58 1.25

[23] with Fill-SGM 0.43 0.75 2.18

Without interpolation 0.24 0.28 1.75

After interpolation 0.32 0.41 1.74

Table 1. Comparison of our method with two variational scene

flow methods.

automatically, occluded area will have no data because of

unsuccessful optimization. So all the results above do not

include occluded areas. Because the synthetic process did

not consider illumination change, if optimization succeeds

the NCC score should be perfectly high, so we set a high

NCC threshold (0.95), and the patch size µ was set to 7 in

this experiment.

(a) Left image at t (b) Optical flow

ground truth

(c) Disparity ground

truth

(d) Reconstructed 3D

model

(e) Optical flow (f) Disparity

Figure 4. (a) Left image of the synthetic ball dataset. (b-c) Optical

flow and disparity ground truth encoded with pseudo-color. (d-f)

Our results of 3D model, optical flow and disparity.

(a) Frame 151 (b) Frame 155

(c) Reconstructed 3D model (d) Motion field

(e) Large motion
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(f) Statistics of prediction error of

the control points.

Figure 5. Images and results of the synthetic cloth dataset.



Figure 6. From left to right, input image at t of camera 8, our result of 3D model, image of camera 3, our 3D model, estimated scene flow

(sampled and only those visible to camera 3 are displayed.), and close-ups of temporal correspondences in the four windows marked in the

third image (only %50 of the points are displayed).

Figure 7. Paint frame 114, camera 8 and camera 3,our results of

3D model and motion field.

Another synthetic experiment was carried out to demon-

strate our method’s ability to handle large motion. We use

synthetic data because the deformation can be controlled

and we can compare our results with the ground truth. We

simulate in 3DS MAX a piece of cloth with its top fixed

waving in wind. An image of real cloth was mapped onto

the 3D model, and two virtual cameras were set to capture

the deformation of the cloth. The ground truth contains

900 control points whose 3D positions are known in every

frame. We selected two frames 151 and 155, the images

of camera 1 are showed in figure 5(a) and 5(b). Note the

bottom left corner of the cloth deforms with large displace-

ment, in fact the displacement is larger than 30 pixels. We

give the close-up look of our result of estimated motion of

the control points. Figure 5(f) shows the histogram of the

prediction error, most of which is within 1 pixel.

3.2. Real Data

Two real datasets were used in our experiment. The paint

dataset by White et al. [24] captures an actor wearing a

pair of loose trousers dancing. Although the trousers are

highly textured, its motion is complicate and self-occlusion

frequently occurs. The result of frame 29 and 114 is showed

in figure 6 and 7. We also give close-ups of temporal cor-

respondence of frame 29 in figure 6, which are obtained by

projecting 3D correspondence onto image. The face dataset

was captured by us using two cameras. In order to capture

accurate motion of human face, we randomly drew texture

on the face. We show our result in figure 8. The final re-

sult of 3D models in the two experiment is reconstructed

from obtained oriented point clouds using a Poisson surface

reconstruction approach[10].

We selected two frames 0 and 6 from the face sequence,

as there is topology change between these two frames. Note

that the person’s mouth changes from close at frame 0 to



open at frame 6. Mesh-tracking methods usually can not

handle this change. As our method does not assume a fixed

topology, it works even with topology change. We give the

two 3D models at the two time obtained by our method and

also closeup of temporal correspondences near the mouth in

figure 9.

Figure 8. Top:an input image, reconstructed 3D model and mo-

tion field. Bottom: close-ups of temporal correspondences in the

windows marked in the first image (only %20 of the points are

displayed).

4. Discussions

1. The influence made by the number and distribution

of matched feature points on final results depends on

the complexity of surface’s topology. If the topology

is simple, the result will not be bad even with a few

matched feature points. The feature points can be mis-

matched, but the outliers will have limited effect on

the final result because new patches can not grow from

those outliers.

2. The running time of the algorithm also depends on the

complexity of surface. For example, the ball dataset

takes only 12 min because the topology is simple

though we set β to 1, while the paint dataset usually

takes over 30 min even with β set to 2. The main

computational cost is on the calculation of the Jaco-

bian matrix for optimization. There is still plenty of

space to speed up the algorithm.

3. The local rigid model can be replaced with more com-

plicated models depending on different applications.

For example, our model may not be suitable for mod-

eling elastic surfaces and thus a model with more pa-

rameters can be used alternatively.

5. Conclusion

This paper present a new method that simultaneously

recovers structure and motion from multi-view image se-

quences. This method is based on a reasonable assumption,

and starts from sparse feature points. It does not require

priori knowledge about the 3D shape and motion, which

makes the method able to handle topology change and self-

occlusion. Besides, because of the matched feature points,

this method can cope with large motion. At the same time,

the local optimization nature of the method and the region

growing framework makes the reconstruction result accu-

rate and dense.

As our method is still based on computing the gradient

of image, it does not work well in weakly textured regions.

This can be seen in the experiment, in figure 9, outliers still

exist in some regions although we set a relative high NCC

threshold 0.7. Our future work will mainly focus on this

problem.
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